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Introduction to DoE:
Target: Model based development and optimization: 

�Design of Experiments – What?

�Design of Experiments – Why?

�Design of Experiments – How?

�Comparison of conventional approach to DoE

�Example based theory

�Advantages of DoE

�Preconditions for DoE
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Design of Experiments – What?

Design of Experiments 

DoE = Statistical Design of Experiments

DoE Methods  distribute an optimized low number of Parameter Combinations 

in an area of influencing parameters (design space) 

in order to get a statistically assured, Empirical Model to predict 

the Experimental Result on any position in the design space. 

Preknowledge can and shall be used to support the design process.

Sir Ronald A. Fisher (1890 – 1962) 

� 1924: DoE started 
based on  agricultural Questions: 

First systematic experiments to Predict and Optimize 
the Harvest as Function (dung, soil conditions, 
watering and others)
by  Sir Ronald A. Fisher
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Design of Experiments – Why?
e.g.: typical task in R+D / Calibration:
Optimization of Injection and combustion: 

ECU 
Engine Maps =
Application Label

Target:
� Min fuel consumption
� Emission limits

Input Parameters:
High amount of 
variables

Diesel:
� nozzle type
� Injection pressure
� Start of Injection
� EGR
� Boost pressure 
� several injections

etc.
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Design of Experiments – Why?



Higher flexibility = dramatic increase of complexity

2000 20101980 20201990

actuators & 
sensors

Calibration parameter, 

application work

Develompent time

ECU-calibration: new processes and tools are necessary

Design of Experiments – Why?



Design of Experiments – Why?
Full-Factorial optimization

E.g.: 5 measuring points for each direction each

1 parameter

SOI

Number of 
measurements

= 5

2 parameters

SOI
Rail press.

Number of 
measurements

= 25

3 parameters

SOI
Rail press.
EGR

Number of 
measurements

= 125

4 parameters

SOI
Rail press.
EGR
Boost press.

Number of 
measurements

= 625

5 parameters

SOI
Rail press.
EGR
Boost press.
Pilot Injection 
quantity

Number of
measurements

> 3000
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Design of Experiments – Why?
Often used process:     OFAT – one factor at a time

Not possible: 

Number of parameters!

Classic:
Parameter variation 

OFAT – one factor at a time

CSI

T
T

P

Full factorial

CSI

-2
0
  
  
  
  
  
  
  
 1

0

selected experimental space

speed

load 

T
T

P

TTP = trigger 
time-point

CSI = cam 



Design of Experiments – Why?
Consequences of „one factor at a time“

Alteration of one variation parameter 
while leaving the other one constant, 
does not lead automatically to the optimum

Different start points result in different optima

Many measurements with limited information

No quantification of the interaction of the 
individual variables



Design of Experiments – Why?
Interaction What is that?

System-

response

factor 1

factor 2

System behavior when 

varying factor 1 

& factor 2 constant

Estimated system 

behavior when varying 

factor 2



System-

response

factor 1

factor 2

System behavior when 

varying factor 2 

& factor 2 constant

Estimated system 

behavior when varying 

factor 2

Design of Experiments – Why?
Interaction What is that?



System-

response

factor 1

factor 2

Alternative behavior:

Lateral buckling of the 

behavior when varying 

both factors

= Interaction!

Design of Experiments – Why?
Interaction What is that?
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Start of Injection (SoI)
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Design of Experiments – How?
Model based development and optimization (1 D-example)

+ Modelquality

+ Information on reproducibility

Start of Injection (SoI)
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Online Optimization without DoE

Model

Optimization with DoE

BSFC=a.SA2+b.SA+c

Start of Injection (SoI)
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B

S
F

C Inside the brain without DoE:
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Predicted VPI % Contour Plot

25 .. 30 measurements

CCD-Design, 2 Parameter: SOI und TTP

BSFC = K2 * TTP^2 + K1 * TTP + 

K3 * SOI ^2 + K4 * SOI +

K5 * TTP * SOI

K0

conventional

S
O

I

TTP

DoE
(model based)

6 measurements for  coefficients

3 measurements for model quality

4 measurements for reproducibility         

testbed – engine

13

measurements

Design of Experiments – How?
Model based development and optimization (2 D-example)



Alternative to the conventional process

Variation Parameter 1
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Create an experimental design, that varies all variables simultaneously and 
includes the interaction effects too.

� Maximum information for a low number of measurements

Design of Experiments – How?



ExampleExampleExampleExample

Consumption mapConsumption mapConsumption mapConsumption map

classical:
parameter variation 

(OFAT)
DoE

classical: 
“dragnet“ / „full factorial“ 

investigation

Advantage:

• complete design space

• model building possible

• almost exact fit

• drift sensitivity ?

Disadvantage:

• With more than 4 

parameters,   the required 

number of experiments is 

not applicable

Advantage:

• few measurement  points

Disadvantage:

• different start points can 

lead to different optima 

• no modeling possible

• design space incomplete

• drift sensitivity !

• no quantification of 

interaction  

Advantage:

• complete design space

• few measurement  points 

• exact optimization result

• modeling possible

• no drift sensitivity !

• interactions covered

Disadvantage:

• learn the method once

Comparison of conventional approach to DoE



DoE goal: modelling!  � Different Designs available

Linear:

y = k*x + d

SOI

c
o

n
s
u

m
p

ti
o

n

Quadratic:

y = a*x^2 + k*x + d

Higher order:

y = b*x^3 + a*x^4 + k*x + d

SOI

c
o

n
s
u

m
p

ti
o

n

SOI
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o

n
s
u

m
p
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n

classic DoE´s = f(model equation) or: just “space filling”:

e.g.: Latin Hypercube - Design
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Recommended (start-) designs for ICE-Tasks:

a) Preknowledge regarding nonlinearity of the responses 

for different directions available?

b) Not too strong constraining borderline maps?

�take a D-optimal Design! (most efficient)

or:

a) ad a): no idea!

b) ad b): narrow borderline maps for global modeling

�Take S-optimal Design 

(most efficient space filling design)



� Variation list

� Online DoE screening (adjusts the design-space)

� Online D-optimal adaptive 

+

DoE on Internal Combustion Engines?
� „It can destroy my engine !?!“

x



DoE on Internal Combustion Engines?
� „It can destroy my engine !?!“

9
0
1
4
7
-1

8

� Variationlist

+ fast
- Limits -> points are lost

� Online DoE Screening
+ Point number is kept
- Design is distorted

�Adaptive Online DoE
1.) + Point number is kept

- Design is distorted
2.) +adaptive Phase (D- / S-optimal)

+Design is recalculated and
adapted to the drivable range

� DOE Box Behnken

+ Polynomial models of second order
- Interaction not fully investigated

� DoE Central Composite

+ Polynomial models of second order  (fully)
- symmetric design space needed

� D-Optimal
+ free polynomial order (depending on the direction)
+ freely shaped design space (by candidate set)
+ Inclusions possible
+ additional number of points definable
- Preknowledge regarding the task benefical

� Latin Hyper Cube

+ Just filling the space (defined by number of points)
- Outside rarely covered
- Symmetric designspace
- No direction specific differences possible

� S-Optimal
+ Fills the space – also in inclined houses
+ Asymmetric design space  fully supported
- Preknowledge regarding the task benefical

Test Template (iProcedure) Design (DoE)
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Example based theory:
e.g.: typical task in R+D / Calibration:
Optimization of Injection and combustion: 

ECU 
Engine Maps =
Application Label

Target:
� Min fuel consumption
� Emission limits

Input Parameters:
High amount of 
variables

Diesel:
� nozzle type
� Injection pressure
� Start of Injection
� EGR
� Boost pressure 
� several injections

etc.
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Model based development and optimization: 
“Injector selection with best calibration and trade off view”

Calibration Target Definition

Experimental Design

Testing

Data Analysis and Modeling

Optimization

Validation

Target:

To select the best injector (FC = min), 

that meets both power and emission 

requirement using trade off optimization  

Variations in 4 Modal points: 

� Rail Pressure

� SoI (Main Timing Phasing)

� EGR Valve position (Air mass)

Measurements to be taken in stable conditions: 

� FC (Fuel Consumption)

� NOx + HC Emissions

� Soot Emission, Particle Number

� Noise,

Maximum cylinder pressure, MFB 50%
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Model based development and optimization

Calibration Target Definition

Experimental Design

Testing

Data Analysis and Modeling

Optimization

Validation

� 4 Modal points out of 13 Mode-Test

� Variation of 

� Rail Pressure

� Main Timing Phasing

� EGR Valve position (Air mass)

� D-Optimal design for models up to 3rd Order 

(27 measurements per Operating point )

� On line adaptation keeping the Engine limits for

� Maximum Cylinder pressure

� Maximum Turbine inlet temperature

� Maximum turbine speed
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Model based development and optimization

Calibration Target Definition

Experimental Design

Testing

Data Analysis and Modeling

Optimization

Validation

The Method allows for testing:

� Fully automated execution of test runs

� Fully automated limit reactions

� Fully automated adaptation of the DoE
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Important before starting 
the modeling of 
all required channels !

���� Check the DoE Design

→→→→ Variation vs. run order and 

→→→→ Variation vs. Variation

� Check, if desired settings happened
Compare demand values to 
actual values of the variation parameters
→→→→ Variation Demand vs. Actual

���� Find strong outliers 
in the measurements

→→→→ Measured vs. RunOrder

���� Check the Reproducibility 
of the boundary conditions

→→→→ Measured vs. RunOrder

next theory part: � The raw data analysis
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Empirical mathematical modells
e.g.: Polynomial Models (= base for many other types)

Fuel consumption [kg/h]

measurement points

repetition points

f (rail pressure)

e.g.: 2nd order model equation:

z = ao + 

Constant 

+ a1*SB + b1*Prail +

Linear terms (main directions)

+ a2*SB2 + b2*Prail2 + 

Quadratic terms (main directions)

+ c*SB*Prail

Interaction term 2nd order

f (start of injection)



Model types

� Polynomials

Model order: arbitrary

� Free Poly Model (FPM)

Model order: arbitrary

Automatic order reduction

Deletion of insignificant terms

� FNN Fast Neural Network / INN 

combination of several Polynomial models as Neural net work 

� Integration of custom model types



1) Average value

2) Standard Deviation:

To measure the average deviation 

between the average value and the 

individual measurements 

time, 

no (other) systematic influencing paramters
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3) Frequency distribution:

Define an area and count the 
number of values
within the defined area
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How to judge model quality?
some statistic basics:



Truth  � Sample

Truth: random distribution of individual results

around the average value  (normal distribution)

µ
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n
  

>
>

σ

The true value     has, for example,

a 95% probability of falling within

µ

n

ts
y

n)%,95(⋅
±

y

Measurable: n samples + s + histogram:

n

ts ⋅

Confidence interval
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s = Standard deviation; t = Student factor 

(table value) / t-distribution: normal equation derived 

from distribution. Can be interpreted as a signal-noise-ratio



Residua:

ith model value as a function of     

x (independent variable)

ith measurement value as a  

function of the response at xi

x
Independent value (factor or variation)

y
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iŷ

iy

iii yye −= ˆ
iii yye −= ˆ

Methode of least square fit:

Adapt the model coefficients (k, d) 

such, that:

In case of (linear) Regression:

Mine
n

i

i ⇒∑
=1

2
dxkyi +⋅=ˆ



x
Independent value (factor or variation)

y
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In case of (linear) Regression:
� residua and confidence intervall are still usefull!

dxkyi +⋅=ˆ

1) Regression coefficient

2) Standard deviation

3) Statistic analysis of the variance  

(ANOVA)

4) Confidence interval of the models

5) Are the base conditions for the 

results above fulfilled 

(Normal distribution of the residua)? 
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y

( )2ˆ yySSR i −Σ=

x

y

SSR: Sum of Squares Regression

(deviation model / average value)

SSE: Sum of Squares Error 
(deviation measured value / model)

2)ˆ( ii yySSE −Σ=

x

y

SST                   =  SSR               + SSE

y

iŷ

iy ith measured value

ith modeled value

Average of all measured values

= +

SST: Sum of Squares Total 

(deviation measured value / average value)

2
i )yΣ(ySST −=

x

y

Splitting of the average value deviations



Regression Coefficient (Coefficient of Determination)

SST

SSE

SST

SSR
R −== 12

y

iŷ

iy : ith measured value

: ith model value

: average of all 

measured values

Variation Parameter

R
e
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s
e
 V

a
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b
le R2

good

SSR: Deviation of the modeled values from    

the total average value                          

SST: Deviation of the measured

values from the total average value

Must be between 0 and +1

It shows how much the model explains the 

deviation from the average value. 

It shows how exactly the model matches to 

the measurement values.



Adjusted Coefficient of Determination

( )1/

)(/
12

−

−
−=

nSST

knSSE
adjR

R2 = Regression coefficient 

(coefficient of determination)

n   = number of values

k   = number of independent model-
coefficients

R2 even better, but R2
adj. bad! 

Attention!!

“R2 adjusted”:

Ranges between - ∞ and < R2

R2
adj takes into account the model’s degrees 

of freedom (n - k)

R2
adj can decrease with increasing model 

order, due to reducing degrees of freedom, in 

cases where R2 would indicate a more faithful 

model fit.

Variation Parameter
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Predicted Coefficient of Determination

SST

PRESS
predR −= 12

SST: Deviation of the measured values from 

the total average value

PRESS: Sum Squares of the deviations of 

the measured values from the modeled

values, where the respective measurement is 

not used for the model calculation

(otherwise it is the same as SSE).

PRESS: Predictive Residual Sum of Squares

“R2 predicted”:

Ranges between - ∞ and < R2

R2predicted describes the model’s predictive 

power. 

We treat the jth measurement as unavailable 

for modeling, however this measurement is 

used for calculating the jth residual. 

PRESS is the sum of the squares of residuals 

calculated in this way.



Confidence Interval

ii DFyConf ⋅±= ˆ
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Start of injection

ii DtyConf ⋅±= ˆ

: model value in place i

t : Studentfactor

: local quantile

iŷ

iD

Shows the boundaries of the range within 

which the “true model” is valid with a 

confidence of, for example, 95% .

Shows whether the model value change, as 

a function of some variation parameter, is 

significant or not.

In CAMEO, the confidence interval can be 

set to 90%, 95% or 99%.



Prediction Interval

)(ˆ 2
sDtyedPr ii +⋅±=

: model value in place i

t :  Studentfactor

Di : local quantile

s : standard deviation

iŷ

Shows the boundaries of the range within 

which results are expected to lie, with a 

probability of, for example, 95%, if the 

experiment is repeated.

Shows whether a verification measurement 

can be expected within this range of the 

model. 
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SSR

SSE

SST

Sum of
Squares (SS)

Degrees of
Freedom (df)

Mean
Square (MS)

F-Value
(F)

Significance
(p)

Regression 665 6 110.0 559.8 0.00001

Error 12 64 0.19

Total 677 70

Number of 

measurements   n

Number of Model-

koeffizients     k

error

regression

MS

MS
F =

Mean Square: regression

regression
df

SSR
MS =

error

error
df

SSE
MS =

or

Does a regression explain more than an average value? 
� ANOVA - Analysis of Variance „F-Test“



1) Define a Hypothesis to be checked (e.g.: “one variance is significantly bigger than the other”)
2) Determine the Probability for an F-value in case the Hypothesis is true (or wrong)

cumulative F-distributionF-distribution

p ………… Probability of that  Fi-value in case the Hypothesis  is true

1-p ………. Probability of that  Fi-value in case the Hypothesis  is wrong

Fi Fi

p
p

1-p

Analysis of variance – F-destribution  
(Fisher-Snedecor- distribution)



Varianzanalysis and - F-distributions

The shape of the F-distribution strongly depends on the 
degrees of freedom of the compared variances:

dof1,dof2 �

dof1,dof2 =1
dof1,dof2 =10
dof1,dof2 =50
dof1,dof2 =100

dof1,dof2 �

)2,1,( dofdofFifp =

p10

p1

p50

p100

Fi

cumulative F-distributionF-distribution



So the „Significance“ shows in case of the F-Test the 
remaining probabillity, that a regression could not give more 
information than a poor meanvalue 
(MSRegression  not bigger than MSError)

SSR

SSE

SST

Sum of
Squares (SS)

Degrees of
Freedom (df)

Mean
Square (MS)

F-Value
(F)

Significance
(p)

Regression 665 6 110.0 559.8 0.00001

Error 12 64 0.19

Total 677 70

Anzahl der 

Messwerte n

Anzahl der Modell-

koeffizienten k

error

regression

MS

MS
F =

Mean Square: 
regression

regression
df

SSR
MS =

error

error
df

SSE
MS =

or



2nd Signifikance Test: Lack of Fit?

Check the Hypothesis:
Varianz of other pionts arround the model >>

>>Varianz of the repetition failure ??

F-Distribution:

Parameter

MSLack

MSErr

response

Lack of Fitno Lack
of fit

p=0.95

F2=3.5 … Hypothesis is true  

→ Varianz of points arround the model is significantly bigger 

than in the repetition point � “Lack of Fit”

F95 > F2 > F50 …Hypothese is probably not true 

→ Varianzes are in the same range � no “Lack of Fit”

(optimal Model)

F2=0.8 … Danger of “overfit”

F2=3.5F2=0.8 F295

)2(

)..1(
2

ntsrepetionpoofnumberdofMS

ntsrepetionpoowpojntsofnumberdofMS
F

Err

Lack

=

=
=

)2,1,( dofdofFifp =



Small residuals occur more often than large 

ones, i.e. normal distribution of residuals

� Model fits to the average behavior!

� No trend (random errors are independent  

of each other and no function of time)

Constant standard deviation of the residuals 

(independent of x)

Linear model

Residual spread -

Normal distribution

Factor

Cumulative

frequency

Precondition of normal distribution of the residuals fulfilled?



Summary Statistic base concepts

Parameter Range Meaning Excellent Good Average

R2 0 to 1 Quality of model fits to measurements, 

ratio of modeled to total deviation from the 

average value

≤≥ 0.95 ≥ 0.8 ≥ 0.5

R2adj - ∞ to 1 Adjusted to the number of degrees of 

freedom – the more coefficients (higher 

model order) and fewer measurements, 

the lower the statistic.

≥ 0.95 ≥ 0.8 ≥ 0.5

R2pred - ∞ to 1 Model predictive quality for new measured 

values (be careful with few measurements) 

≥ 0.9 ≥ 0.7 ≥ 0.4

Confidence interval Range in which the true model value lies 

with a 95% probability

Intersection Plot: relative to 

measured range x/y Plot: 

Color code – 100% equates to 

measurement range

Prediction range Range in which a single new measurement 

is expected to lie, with a probability of 95% 

Intersection Plot: relative to 

Measured range x/y Plot: 

Color code – 100% equates to 

measurement range



F-test MSRegression significantly bigger than 

MSError?

Lack of Fit MSLack (other measurement points) > ? 

?> MSError (repetition points) ?

Visible in Measured vs. Predicted -

Graphic

Leverage Are there single measurement points with 

a high influence on the model?

Summary Statistic base concepts
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Model based development and optimization

Calibration Target Definition

Experimental Design

Testing

Data Analysis and Modeling

Optimization

Validation

� Modelling of all relevant target channels with 

Polynomial Models or Neural Networks

� Intersection Graphics to (manually) optimize 

and understand interactions

� compare variants (injector behaviours)

N
O

x

EGR p Rail SoI

F
C
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Model based development and optimization

Calibration Target Definition

Experimental Design

Testing

Data Analysis and Modeling

Optimization

Validation

� How much FC to spend in order to reach the Nox-

Traget?

� Which injector gives best FC weighted over the 4 

modal points – with his individual best calibration?

6

7

8

9

10

11

12

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

BSFC [g/kWh]

N
O

x
  
[g

/k
W

h
] Hardware1

Hardware2

Hardware3

y

y + 1

y + 2

y + 3

y + 4

y + 5

y + 6

x                           x + 5                         x+10                       x+15 

Target

Pareto Front: showing the Trade Off behavior
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Model based development and optimization:
compare 2 Pareto fronts of two hardware variants:

Injector 1

Injector 2

EGR p Rail SoI

F
C

N
O

x

FC
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Model based development and optimization

Calibration Target Definition

Experimental Design

Testing

Data Analysis and Modeling

Optimization

Validation

� Where the models accurate in the area of the 

selected optimum?

� Check after the verification test run:

measured value should be within the 

Prediction interval of the models

N
O

x
N

o
is

e

S
O

O
T

F
C

� All relevant verification measurements 

with in the prediction intervalls of the models

� the whole process   performed in trustable way



5 reasons for DoE

� Strongly reduced number of measurements (maximum information, 

minimal effort)

� Noise identification: discrimination between noise and a real effect in the 

response factor; observable with DoE (confidence level, measurement 

system stability) – difficult with conventional approach

� Tested range will be modeled completely (good predictability over the 

complete range)

� Results are reproducible and documented

� Better insight into the variable-interactions (rapid improvement in 

expertise)



Boundary conditions for DoE

� Requires testbed systems of higher quality and stability

� Fundamental knowledge of relationship between parameters and target 

function; otherwise higher effort

� Higher automation level is helpful


