Model based development and calibration Innovative ways to increase calibration quality within the limits of acceptable development effort!

000

AVL

MODEL BASED DEVELOPMENT

Challanges

EUROPEAN EMISSION LEGISLATION PASSENGER CARS

RTC WLTP PEMS OR (World light duty test procedure) (portable emission (random test cycles) measurement system) WLTC NFDC vehicle @ dyno on-board measurement acceleration 1.8 m/s² 1.0m/s² random based on EU- real on-road driving 46 km/h 33 km/h mean velocity database (20.000 trips) • real temperature cond. idle share 23% 13 % 140 PEMS 120 100 [km/h] 80 뒇 60 Currently no **Currently limited** ambient temperature 200 400 600 800 1200 1400 1600 **PN-measurement** time [sec]

Next steps EC/ JRC:

- Definition of PEMS boundaries (temperature, idling, altitude, inclination,...)
- Beginning of 2013: Screening of small fleet
- PEMS most likely to come, methodology to be defined until mid 2013
- Definition how EC will survey ISC (in addition to OEM tests)

ENGINE SPEED / LOAD DISTRIBUTION EXAMPLES OF REAL WORLD DRIVING VS. TEST AVL

Load Collective NEDC vs. RDE

Options for RDE:

- Random test cycle: Chassis Dyno Simulation
- PEMS: Measurement in customer driving with PEMS
- \rightarrow Decision open

MODEL BASED DEVELOPMENT

Intention

Model Based Development What is it?

- Model based development using a real time capable engine model
- Starting from **concept** phase until **SOP** calibration
- Engine model based on semi-physical modeling approach

 \rightarrow empirical model components derived from AVL experience and test bed data

 \rightarrow physical components increase the range of application due to better extrapolation

• Easy usability due to the use of suitable simulation environments

Increasing system robustness within given development duration and budget by transferring development from real to virtual testing

Definitions - Model Accuracy Levels

Maturity Level	Description	Use Cases
Level 1	Only the main geometrical data of the engine are used as input for model set-up	 Concept study and decision ECU algorithm design Exhaust gas aftertreatment (EAS) concept
Level 2	Measurement data is used to make a refinement of the model to increase accuracy.	 Pre-Calibration: the possible calibration tasks depends on focus of the model parameterization Used for specific calibration tasks
Level 3	Model is adapted to steady state and transient data, measured at AVL. Highest accuracy which is needed for model based calibration.	 Variant calibration support Ambient correction calibration (altitude/hot/cold) EAS calibration strategy OBD calibration support Robustness investigations ECU algorithm verification

Model based Development Modelling Process

Model Accuracy High model accuracy as base for model based calibration

Typical deviations of the cycle emissions and fuel consumption as well as achievable temperature accuracy:

- Fuel Consumption < 3%
- NOx Emission < 5%
- Insoluble Particulate Emission < 10%
- Temperature Intake Side < 10 ℃
- Temperature Exhaust Side < 20 ℃

Model Accuracy High model accuracy as base for model based calibration

NRTC Cycle Results

Typical deviations of the cycle emissions and fuel consumption as well as achievable temperature accuracy:

~ 7%

- Fuel Consumption < 3% •
- NOx Emission < 5%•
- Insoluble Particulate Emission < 10%
- Temperature Intake Side < 10 ℃ .
- Temperature Exhaust Side < 20 ℃ ٠

MODEL BASED DEVELOPMENT

Application Environment

Model Based Development Virtual test beds – Comparison Simulation Environment

Model in the Loop (MiL)

Advantages

- + Simulation faster than real time (app. 5 times)
- + No hardware parts needed
- + Simulation on normal PC possible

Disadvantages

- Setup of software ECU time consuming
- typically not all ECU functionalities available
- Hard to achieve equal control behaviour as real engine

Hardware in the Loop (HiL)

Advantages

- + All ECU functions available
- + Pre-Calibration of all ECU functions possible
- Possibility of ECU software and dataset validation

Disadvantages

- Only real time simulation possible
- Need of hardware in the loop test bed
- Need of hardware parts

 \rightarrow Both environments can be used for pre-calibration of specific tasks

Suitable Application Environment – As Prerequisite to Integrated a Model Based Calibration Methodology in an exciting Application Team

Standard Hardware-in-the-Loop test bed

- \rightarrow HiL operation system
- \rightarrow HiL automation system
- \rightarrow Calibration software (INCA,..)

Advanced AVL Hardware-in-the-Loop test bed extended with

- \rightarrow Advanced semi-physical powertrain model
- \rightarrow PUMA & CAMEO

Same interface for the calibration engineer as real test bed

 \rightarrow PUMA Host Connection

Simulation results stored in same format as real test data

 \rightarrow Post-Processing

Same CONCERTO Layouts can be used for data analyzing

 \rightarrow Calibration Software (INCA,...)

Application – From Virtual Test Bed to SOP Virtual Test Beds as Extension of Real Test Facilities

Test Bed

Vehicle Validation

MODEL BASED DEVELOPMENT

Use - Cases

Model Based Development Concept Investigations

Model based concept investigations

- Assessment of technology route
- Simulation of transient behaviour of engine in early concept phase on MiL environment
- Definition of possible concepts considering the interaction between
 - engine
 - exhaust aftertreatment system
 - software and calibration
 - Sensors and actuators
 - environmental conditions

Model Based Development Concept Investigations – DPF Soot Loading

Boundary conditions: Tier4i engine NO_X/soot ratio < 10 [g/g]

If NO_X/soot ratio increases DPF soot load in balance point will be lowered.

Low engine out total soot emissions allows also for conditions were no CRT effect is observable a long operation without DPF regeneration. Soot Model accuracy can be reduced to a worst case scenario.

Simulation of specific duty cycles for different applications with respect to DPF soot loading behavior on HiL system \rightarrow Calibration validation

Model Based Development Calibration of Ambient Corrections

Simulation of full load altitude operation for validation of ambient correction and engine protection functions

970mbar = 350m (Graz) 750mbar = 2500m 660mbar = 3500m 540mbar = 5000m

Limits for component protection

Model Based Development Calibration of Component Protection Functions

Simulation of engine failure at full load for validation of engine protection functions

	5% leakage downstream turbocharger
	25% leakage downstream turbocharger
	50% exhaust restriction
	50% intake restriction
	Baseline
-	

Limits for component protection

Ideas for Application of Model-Based-Development in OBD Calibration

Validation of calibration

- Functional check of calibration (Tested-Flag, P-Codes, etc.)
- Check of IUMPRs at different driving profiles (e.g. using same calibration for a commercial truck and a city bus)
- Robustness investigation and tolerances
- ...

Pre-calibration

- Pre-calibration of thresholds, enable/release conditions, debouncing
- Simulation of fault-parts (e.g. EGR-orifice, broken DPF, etc.)
- Multi-Variant calibration (e.g. adjustment from lead-calibration to a follow-up variant)

• ...

Evaluation and R&D projects currently ongoing

Calibration on Hardware-in-the-Loop test beds Virtual Test Beds as Extension of Real Test Facilities

Powertrain calibration tasks for HiL test bed

- Pre-calibration of different calibration work packages
- Calibration for non-standard ambient conditions
- Calibration of component protection
- Vehicle/Engine derivate calibration
- RDE Real Driving Emission evaluation
- Real world fuel consumption optimization
- Sensitivity studies taking into account system interactions
- Software and dataset validation

Front-Loading Example

Ideal Lead Variant Calibration Project (i.e. no relevant H/W changes)

Facilities

HiL

Road

Engine Testbed

Chassy Dyno

Front-Loading Example

Ideal Lead Variant Calibration Project (i.e. no relevant H/W changes)

Facilities

HiL

Road

Engine Testbed

Chassy Dyno

Multi-variant projects can be addressed by: an extension of the test environment through HiL (MiL/SiL) Testing

- Keep calibration quality through additional HiL testing, though high number of variants
- Multi-variant simulation (calibration clustering, RDE, EAS, OBD)
- Keep test facilities usage by a feasible level
- Make environmental testing more flexible and efficient

Calibration Process and Dataset Management

Month before SOP

Conclusion - Innovative ways to increase calibration quality within the limits of acceptable development effort!

- \rightarrow Shifting of development tasks in earlier phases and well proven concept decisions
- \rightarrow Reduction of project duration due to additional virtual test facilities
 - Independent from environmental conditions
 - Independent from vehicle availability
 - Higher efficiency for real testing

iset - Quality

montoling and solid validation	Dataset - (
Test bed development Vehicle development Fleet validation model ba	ased
Concept Test bed development Vehicle development Fleet validation	>
Concept Test bed development Vehicle development Fleet validation	27

AVL LIST GMBH Your Independent Engineering Partner

Thank you for your attention