

Model Based Development and Calibration

Guillaume Broustail & Srinivasan Ananthan – AVL UK Expo 2015

AVL 00

Model Based Development CRUISE M and MoBEO

Model overview

Model Based Engine Optimization What is it?

 Model based development using a real time capable engine model

AV

- Starting from concept phase until
 SOP calibration
- Engine model based on semiphysical modeling approach

→ empirical model components derived from AVL experience and test bed data

- → physical components increase
 the range of application due to
 better extrapolation
- Easy usability due to the use of suitable simulation environments

•

Model Based Development -MoBEO Modelling Approach

Model Based Development - MoBEO Step 1 – Modeling EU6 Base Engine

Model Based Development - MoBEO Step 2 – Modelling of Different Elements

Development Process Consequent usage of real-time system simulation

MOBEO

Application environment

Changing Calibration Paradigm

The right application environment at the right time

Model in the Loop (MiL)

Advantages

- + Simulation faster than real time (app. 5 to 10 times faster)
- + No hardware parts needed
- + Simulation on normal PC possible

Disadvantages

- Availability of software ECU
- Often not all ECU functionalities available

- Need of hardware in the loop test bed

\rightarrow Both environments can be used for pre-calibration of specific tasks

WORK ENVIRONMENTS - XIL-STATION

AVL Standardized HiL Simulator Concept Real ECU & MoBEO Models in an Closed Loop

MOBEO

Model accuracy

Model Accuracy in NEDC – Passenger Car High model accuracy as base for model based calibration

Model Accuracy in Artemis – Passenger Car High model accuracy as base for model based calibration

- Minimal parameterization effort due to semiphysical modeling approach
- Simulation of different driving profiles without model refinement possible

High model quality independent from calibration and operating conditions

Model Accuracy – Commercial Vehicle High model accuracy as base for model based calibration

NRTC Cycle Results

Typical deviations of the cycle emissions and fuel consumption as well as achievable temperature accuracy:

- Fuel Consumption < 3%
- NOx Emission < 10%
- Insoluble Particulate Emission < 15%
- Temperature Intake Side < 10°C
- Temperature Exhaust Side < 20°C

MODEL BASED DEVELOPMENT

Use - Cases

Model Based Development Concept Investigations

Model based concept investigations

- Assessment of technology route
- Simulation of transient behaviour of engine in early concept phase on MiL environment
- Definition of possible concepts considering the interaction between
 - engine
 - exhaust aftertreatment system
 - software and calibration
 - Sensors and actuators
 - environmental conditions

Model Based Development Powertrain Use cases

Powertrain Calibration tasks for MiL/HiL:

- RDE Real Driving Emission evaluation
- EAS Simulation
- Calibration for non-standard ambient conditions
- Calibration of component protection
- In-Use Compliance PEMS
- Sensitivity studies taking into account system interactions
- OBD Diagnoses, IUPR
- Software and dataset validation

Model Based Development Calibration of Ambient Corrections

Simulation of full load altitude operation for validation of ambient correction and engine protection functions

970mbar = 350m (Graz) 750mbar = 2500m 660mbar = 3500m 540mbar = 5000m

Limits for component protection

Model Based Development Calibration of Component Protection Functions

Simulation of engine failure at full load for validation of engine protection functions

5% leakage downstream turbocharger 25% leakage downstream turbocharger
 50% exhaust restriction
 50% intake restriction
 Baseline

Limits for component protection

Model Based Development OBD validation

Model Based Calibration on XiL - test beds Virtual Test Beds as Extension of Real Test Facilities

Boarders of applicability for HiL test bed

- Final Calibration Validation
- Certification
- Durability testing
- Pre-calibration of Start and Cold Start
- Idle stability
- Missfire

Model Based Calibration on XiL - test beds Front Loading

Ideal Lead Variant Calibration Project (i.e. no relevant H/W changes)

AVL

Facilities

HiL

Road

Engine Testbed

Chassy Dyno

Model Based Calibration on XiL - test beds Front Loading

Ideal Lead Variant Calibration Project (i.e. no relevant H/W changes)

Multi-variant projects can be addressed by: an extension of the test environment through HiL (MiL/SiL) Testing

- Keep calibration quality through additional HiL testing, though high number of variants
- Multi-variant simulation (calibration clustering, RDE, EAS, OBD)
- Keep test facilities usage by a feasible level
- Make environmental testing more flexible and efficient

Model based calibration approach

Example based on customer feedback:

NTE, Engine Protection and Ambient Corrections (1 Mode)

Changing Calibration Paradigm: Innovative ways to increase xCU calibration quality

AVL model based development methodology is the consequent usage of real-time system simulation from concept to SOP on suitable development environments with smart calibration tools

