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ABSTRACT
Advanced Driver Assistant Systems (ADAS) are 
important solutions to increase vehicle safety, 
comfort, energy efficiency and vehicle operators 
total cost of ownership. Highly Automated Driving 
(HAD) will furthermore allow to spend the time in 
the car in a different way, which can be used to 
increase profitability. Beside the expected benefits, 
ADAS and HAD require solving huge challenges in 
the areas: development time and cost, systems 
safety, hacker resistance and connectivity.

The paper describes the benefits and challenges 
of ADAS and HAD and presents a new method 
to overcome some of the mentioned challenges. 
The presented method combines real and virtual 
testing in a very tight way. A unique method 
for online evaluation of ADAS quality attributes 
including perceived safety is the basis for efficient 
transfer of application and validation procedures 
from road to lab.

The paper describes the method, plus applications 
on the road and in the virtual world. The 
combination of the method with actual cloud 
computing technology with 5000 cores allows to 
run more than 10 Mio. virtual validated kilometers 
per week.

1.	INTRODUCTION
Advanced driver assistance systems (ADAS), Level 
0 – Level 2, have become an integral part of 
our daily driving routine. Multiple functions for 
increased safety (e.g. emergency braking, blind 
spot detection, adaptive cruise control, lane keep 
assist, etc.) are already increasing our comfort and 
safety in modern cars. L0-L2 systems require the 
full concentration of the driver on the traffic.

The introduction of the next L3 function, traffic jam 
assist (TJA), allows to drive autonomous up to a 
certain speed, e.g. up to 60 km/h. TJA allows the 
passenger for the first time to concentrate on other 
activities, e.g. working, using the smartphone or 
shopping in the internet. Level 3 systems, expected 
for 2019, will allow to cover even longer distances 
without interactions by the driver. Nowadays the 
development is already focusing on Level 4. L4 
systems will allow to concentrate on other activities 
at all speeds and nearly all traffic situations. L4 
can be seen as real revolution in the automotive 
industry. L5, driverless vehicles, will be introduced 
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some years after L4. Main applications will be Taxis 
and good transport.

Vehicle manufacturers' vision presents itself 
stringent to the customer - first ADAS, then highly 
and finally fully automated driving - the resulting 
advantages seem to be short within reach.

The potential for drastically improved active safety 
can be mentioned as first one major benefit (“vision 
zero accidents”). According to accident statistics, 
90% and more of car accidents are caused by 
driver faults and could potentially be avoided 
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by automated driving. This topic is increasingly 
important as traffic accidents are now ranked 9th 
on the ten most frequent causes of fatalities by 
the WHO (1.3 Mio people killed in road traffic 
accidents, 50 Mio people are injured each year).

L3 and L4 systems will drastically change our way 
to use cars and how we spend our time in cars 
during driving or during being driven. L4 cars can 
be ergonomic working offices, comfortable living 
rooms and areas for relaxing and regeneration 
and much more [1]. This transformation will open 
a totally new eco-system for emerging business 
models and markets.

However, these new possibilities are also confronted 
with major challenges that vehicle manufacturers 
must face on their way in realizing the vision of 
highly automated driving. The challenges can be 
grouped with respect to the vehicle (hardware/
software) itself, its development, new legal aspects 
of automated driving and finally the disruptive 
potential of new business models [2]. The market 
for autonomous driving grows to $560 billion 
by 2035, based on new car revenues, hardware 
upgrades, apps, and other digital features as 
stated in [7].

Important fields of innovation regarding vehicle 
technology are robust 360° environment 
perception including divers sensor systems (radar, 
lidar, camera and ultrasonic) [3], safe and secure 
high power automotive computing platforms with 
AI as well as supporting backend services in the 
cloud. Most of the hardware related challenges 
are well addressed and the aim is now mostly on 
efficient mass production: lowering costs, size, and 
energy consumption of sensors and processing 
hardware, and meeting automotive standards with 
respect to robustness. These efforts are important, 
since lowering the additional costs for ADAS/HAD 
components and integration is key to ensure future 
attractiveness of automated cars.

As the vehicle software and its specifically 
tuned algorithms nowadays are a main attribute 
to distinguish car-brands, there is a hard 
competition going on between car manufactures 
in demonstrating their ability to drive driverless. 
In August 2013, Mercedes-Benz engineers 
accomplished a spectacular pioneering work: 
The S 500 INTELLIGENT DRIVE research vehicle 
independently drove the 100-kilometer route 
between Mannheim and Pforzheim, with high 
traffic density and demanding traffic situations. In 

2018 Audi will release the A8 Sedan in the U.S.: 
the first-ever L3 self-driving car, able to control the 
car's steering and speed from a total stop up to 60 
km/h. Announcements of nearly all OEMs expect 
L3 and L4 functions in cars of their brands to be 
released in 202x.

Now, an interesting battleground for autonomous 
driving is California. In the Golden State key 
indicators, such as the “autonomous miles driven 
in average without a driver intervention”, are 
published [4]. Here clearly Waymo, the automated 
driving arm of Alphabet Inc., leads the game, as 
can be seen in Fig. 1 and Fig. 2 respectively.
This race about building self-driving cars, not 
only initiates major changes (reorientation and 
reorganization) within the competing companies 
themselves, but also leads to new strategic 
alliances and joint undertakings being formed [2]. 
New powerful ecosystems are built and all players 
will have to conquer new positions in the future 
value chain [7].

Fig. 1: Miles driven autonomously on average 
without driver intervention in California in 2017 
according to official data published in [4].

 

 

 

 

 

 

 

 

 

 

Although the total number and the progress of 
tested miles on road seems impressive on a first 
look (at least for Waymo), this is only a very small 
number of miles to drive for validation purposes, 
even if considering potential additional testing 
outside California.

In contrast to the strategy of Alphabet Inc., to 
directly aim driverless cars, most carmakers follow 
the approach continuously releasing increasing 
levels of automation. On the way to realize 
driverless cars, estimated to come true in 2030+ [9], 
we will therefore see a step-by-step automation of 
different driving tasks (highway pilot, valet parking, 
intersection pilot, emergency driver assistant, 
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etc.). It is important to mention, that following 
this strategy conventional car-manufacturers can 
take advantage of their leading expertise in car 
development and catch up on their knowledge in 
robotics.

There are multiple challenges to be solved. Apart 
from the vehicle focused challenges there is 
one big issue left to overcome - vehicle testing 
& validation. This article is dedicated to new 
validation approaches and solutions developed 
by AVL, to proof, that driverless cars meet the 
demanding expectations with respect to safety 
and quality.

First the important specific challenges in validation 
of automated driving are pointed out and a solution 
based on combining validation steps in virtual and 
real domain with objective evaluation is given. 
For the sake of clarity, the procedure is explained 
and demonstrated exemplarily for a rather simple 
function – the well-known Adaptive Cruise Control 
(ACC). The article concludes with a summary of the 
most important findings and results.
 

Fig. 2: Total miles driven autonomously in 
California in 2017 according to official data 
published in [4].

 

 

 

 

 

 

 

 

 

 

2.	VALIDATION – A CHALLENGE
In the following the main differences between 
conventional and automated cars are analyzed, 
which are the root cause of the challenges 
connected with validation.

Cars equipped with ADAS and capable of HAD 
differ significantly from conventional vehicles 
in that, a far more complex interaction with 
the vehicle environment takes place, with the 
potential of cause-effect circles. For conventional 
vehicles at the system borders only a limited 

amount of simple physical quantities (mostly slow 
changing or constant) had to be considered, such 
as: air temperature and pressure, road friction 
and inclination, etc. In conventional validation 
therefore, different cases of environmental setups 
are covered with distinct (real) tests.

In contrast to this, automated cars use environment 
perception, performed by cameras, radar, 
lidar, sonar sensors, and car to infrastructure 
communication, leading to far more (and far more 
complex) physical interfaces between the vehicle 
and its environment. This has a direct impact on 
development, tuning, validation and release, of 
vehicle automation: The impact of the environment 
on the vehicle - and in some cases additionally its 
interaction - must also be considered in all these 
steps. Due to the richness of the interaction with 
the environment and the resulting multitude of 
possible situations, however, conventional signal-
based testing with distinct test cases and load 
profiles is no longer sufficient.

Besides the more complex sensor components, 
automated driving functions base on software, 
which hierarchically grows with increasing 
automation levels [13]. Consequently, the functions 
to be validated increase in number and complexity, 
since functions of higher automation levels include 
lower automation features. Both effects increasingly 
raise the testing and validation effort.

An important trend in sensor data processing 
(especially in image processing) is the use of 
artificial intelligence through so called deep neural 
networks (DNN). This technique in contrast to 
previously used machine learning approaches, 
shows to scale far better with the amount of training 
data. Although DNNs already outperform humans 
in specific image processing tasks, validation of 
DNN is cumbersome, since it is still an unsolved 
question, how to extrapolate one test situation to 
another similar one. As a result, testing effort for 
DNNs is still huge. If DNNs are only used in sensor 
data processing - not for control – the testing 
effort however can be limited and performed on 
component level (black-box approach).

Finally, a big challenge in validating automated 
driving often mentioned is proving, that robot/
software driven cars are at least as safe as cars 
driven by humans. This is a crucial point for another 
main challenge connected with selling automated 
cars – the user acceptance. It seems, that finally 
for acceptance even higher levels of safety of 
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automated cars compared to human driven ones 
are requested –practically perfect driving.

The issue with demonstrating quality and safety 
of software drivers compared with humans, come 
into play at so called automation level 3 and above 
according to SAE [5]. These levels of automation 
allow the driver to be, at least temporally, offline, 
and therefore the car must accomplish the whole 
dynamic driving task on its own. The step from 
level 2 and below to level 3 and above is a 
dramatic one, since it implies that now the entire 
task of object and event detection and response is 
up to the car [5].

State of the art approaches for proving super-
human safety, based on statistic considerations of 
fatalities and travelled distances in public roads are 
described in [6], [8], [13]. The main point here is, 
that validation effort in driven distance for vehicle 
release may rise significantly (see Fig. 3). Following 
this, on road testing clearly is not feasible, neither 
from economic point of view nor if development 
time constraints are considered [8], [11] [12], [13].

Note that Fig. 3 also reveals the potential of using 
a higher resolution of assessing the quality/safety 
of an automated vehicle. Moving from ‘fatalities’ 
to ‘reported crashes’ may lower the required 
distance to drive to prove significant superiority 
of the automation. Also increasing difference 
in performance of the vehicle automation and 
average human beings will reduce the amount of 
necessary distance to drive to prove superiority.

Fig. 3: Kilometers needed to demonstrate 
with 95% confidence and 80% power, that the 
autonomous vehicle failure rate is lower than the 
human driver failure rate according to [8]. E.g.  
for a system being at 20% lower failure rate  
18 bio kilometers would be required. Assuming 
100 test-vehicles driving in parallel 24/7 at approx. 
40 km/h, this results in over 500 years testing.

 

 

 

 

 

 

 
 

 

 

 

Virtualisation
•Base-measurement & benchmarking of vehicle

•Modelling & calibration of digital twin

•Correlation of measurement  & simulation 
(model validation by value and trend-analysis)

Virtual 
Optimization

•Configure highly parallel cloud based 
simulation

•Perform parameter variation & function 
optimization

Base 
Validation

•Real tests of optimization results and 
variations therof for result validation

•Final calibration

Full Virtual 
Validation

•Exessive virtual validation (parallel, cloud 
based) of final calibartion using

• Automated scenario generation and vehicle 
and environment parameter variation

Another important trend in the development of 
automated driving, is a paradigm-shift regarding 
development time and development cycles. Short 
update cycles (approx. bi-weekly to bi-annual) 
and agile development known from software-
products enter the automotive domain, which was 
traditionally used to longer vehicle development 
cycles (e.g. 2-3 years).  Consequently, release 
testing efforts will dramatically increase with the 
introduction of agile development paradigm.

To conclude, the challenges due to the nature of 
highly automated/autonomous cars are:
•	Complexity of the automated systems still rises 

with automation levels, due to increasing amount 
of software.

•	The dynamic behavior of the environment must 
be considered in testing.

•	DNNs will play an increasing role in sensor data 
processing, and require high testing efforts.

•	Statistically significant statements regarding 
safety, based on road traffic fatalities, require 
huge distances to be driven in tests.

•	Agile development paradigms demand 
significantly more release-testing.

•	The huge number of tests must be evaluated 
safely.

3.	VALIDATION 
To overcome the discussed challenges, the well-
known V-process is still applicable, but specific 
measures must be met to apply to highly 
automated vehicles [11]. First system components 
(sensors, actuators, software, vehicle hardware, 
etc.) must successfully be tested, e.g. based on 
conventional signal-based methods. In a second 
step, early scenario-based virtual tests of the 
entire automated system must be performed using 
simulation. Additionally, different techniques for 
combining real and virtual testing can be applied 
[12].

For conventional development and release, 
digitalization and simulation, which in this context 
often are referred to, as ‘virtualization’ or ‘front-
loading’, is beneficial - for HAD, virtualization of 
development and testing is mandatory.

As suggested in [10], [13] future validation will, 
additionally to synthetically generated driving 
scenarios, consider real driving scenarios, recorded 
not only in specific test-vehicles, but also reported 
from already released cars in operation. As 
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premium cars will be equipped with all necessary 
sensors soon, relevant data for testing the next 
generation autonomous systems can be extracted 
easily. 

As virtual validation is most promising to be the 
answer to the challenges in the assessment of 
HAD, in Fig. 4, steps of the proposed approach for 
virtual optimization/validation, based on objective 
assessment, are sketched. Details are explained in 
in the following using an ACC example.

3.1 OBJECTIFICATION

Checking development results against requirements 
is key in all modern development approaches. The 
faster and more accurate the check is done, the 
faster and more effective the development can 
be performed. In this context objectification is the 
base technology to address complex measuring 
tasks to check product maturity. 

We use the term objectification, since it enables 
direct objective measuring of complex and 
mostly abstract behavior attributes of a vehicle. 
These attributes are defined usually from a 
subjective point of view – from the drivers view. 
To be independent from one specific subjective 
judgement and to be able to make reproducible 
statements, objectification is used to rate driving 
performance on an objective scale.

Fig. 4: Development and validation approach for 
automated driving based on objectification and 
aligned tests on road and in virtual domain.

 

 

 

 

 

 

 
 

 

 

 

Virtualisation
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•Correlation of measurement  & simulation 
(model validation by value and trend-analysis)

Virtual 
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•Configure highly parallel cloud based 
simulation

•Perform parameter variation & function 
optimization

Base 
Validation

•Real tests of optimization results and 
variations therof for result validation

•Final calibration

Full Virtual 
Validation

•Exessive virtual validation (parallel, cloud 
based) of final calibartion using

• Automated scenario generation and vehicle 
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This objectification can either be reached by 
statistical approaches (lots of drivers rating the 
vehicle), or by software-based evaluation, derived 
from expert knowledge condensed in specific KPI-
values.

Fig. 5: Objective assessment of ADAS on feature 
level through standardized KPIs and automated 
evaluation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVL‘s tool-based objectification (AVL-DRIVE™) is 
used to evaluate quality, safety and perceived 
safety of different maneuvers using absolute rating 
values in a range of 0-10. This software based rating 
approach speeds up the evaluation of calibration 
and by this is the key enabler for efficient and fast 
optimization, and finally reproducible validation of 
AD-functions as depicted in Fig. 6 and discussed 
in [14].

Fig. 6: High quality fulfilment & development 
efficiency from target setting to validation 
through measurable parameters & highly 
automated processing. Objective assessment 
creates benefits along the entire development 
process from requirements engineering to release 
testing leading to a high level of quality and 
speed in development.
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For the selected example of the adaptive cruise 
control objective assessment is done for specific 
features such as:
•	Quality of speed control in different driving 

conditions at different speeds (no preceding 
vehicle).

•	Quality of distance/time-gap control when 
following a preceding vehicle. 

•	Dynamic of approaching a target vehicle.
•	Quality of sudden cut-in/cut-out scenarios.
•	…

The rating is executed automatically, if a 
corresponding scenario is detected by permanently 
monitoring the vehicles states, its sensors, and 
additional sensors of the test equipment during 
driving tests in the operational design domain. 
Weighted combination of the rated sub-features 
leads to an over-all rating of a driving automation 
system.

The objective assessment also enables to 
benchmark existing solutions and define distinct 
design targets to position new applications 
compared to existing ones as shown in Fig. 7.

Fig. 7: History of combined rating of various 
adaptive cruise control and lane keeping assistant 
systems over the past enables positioning and 
target value design for future applications.

 

 

 

 

3.2 VIRTUALIZATION

Virtualization of the subject under test consists of 
transforming the vehicle, its sensors and software, 
and the surrounding environment into simulation 
models and execute test-scenarios in simulation 
tools, as summarized in Fig. 8.

Attention must be paid here that results from virtual 
domain can successfully be transferred back to the 
real vehicle. First detailed physical modelling of the 

Fig. 8: AVL ADAS/AD tool-chain for virtual 
development, testing and validation

 

 

 

 

 

 

 

 

 

 

vehicle and direct transfer of the ADAS-software 
is mandatory. In addition to that validation of 
the digital twin is achieved by correlating KPI-
values between virtual domain and reality, of the 
overall closed loop behavior of the entire system 
(automated vehicle plus environment).

For the example of the mentioned ACC-function in 
practice virtualization involved:
•	Tuning a detailed first principle vehicle model 

in a vehicle simulation software (AVL VSM™) to 
match recorded vehicle dynamic behavior in a 
predefined maneuver catalogue.

•	Modelling the required radar-sensor in the 
environment simulation to generate required 
inputs to the ACC-software. This was done using 
an abstract geometric sensor model considering 
mounting location, and a simplified sensor range 
and detection area approach.

•	Transferring the ACC-software to run as part of 
the system simulation. In the example, this was 
accomplished by an export of the software to a 
functional mock-up unit (FMU).

•	Defining a scenario-catalogue and use an 
automated execution and evaluation tool-chain.

The discussed example was realized using  
AVL’s integrated open development platform 
Model.CONNECT™ to coordinate and link all 
involved simulation and evaluation tools as shown 
in Fig. 8.

The validation of the digital twin was done based 
on correlation of KPI-vales of vehicle measurement 
and simulation results (matched AVL-DRIVE™ 
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ratings). This correlation step may also include 
parameter variations to additionally prove, that 
also trends (sensitivity of parameters) are mapped 
properly as depicted in Fig. 9 and Fig. 10.

Fig. 9: Digital twin: Matched scenarios in vehicle 
road test (left) and vehicle simulation (right) to 
check correlation of real and virtual domain, 
based on matching physical signals and objective 
assessment.

Fig. 10: Exemplary time plots of velocity of 
ego-vehicle to validate closed-loop longitudinal 
vehicle behavior (correlation of real and virtual 
domain for ACC-Validation) also based on 
matched AVL-DRIVE™ ratings (DR).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 VIRTUAL OPTIMIZATION

Tuning driving functions to satisfy a targeted brand 
specific customer impression involves extensive 
testing, as the entire vehicle system may need 
to be involved. To keep short time-to-market 
development cycles, automated tuning in the 
virtual domain plays a key role in developing high 
quality driving functions fast.

As the virtualization step is successfully done, 
the digital twin can be used for optimization and 
function tuning in virtual domain. 

The advantage is clear: an extended range of 
tests can be performed compared to real-road 
tests. Even potentially dangerous driving situations 
can be included safely. Reproducible results 
are guaranteed and automated objective test 
evaluation ensures a fast and effective calibration 
process of the AD-function at any time considering 
the complex interaction with the environment. 

Executing detailed parameter variations for 
optimizing the tuning parameters in simulation is 
limited by the computational resources of standard 
office computers. To successfully tackle more 
demanding tuning tasks, aligned cluster/cloud 
execution of simulation is required for scaling the 
approach to the specific needs as shown in [15]. 
Cluster/Cloud execution of multiple simulation 
instances as depicted in Fig. 11 will clearly lead 
to faster execution of the optimization task 
compared to office computer usage, but will create 
additional overhead for coordinating execution 
in the cluster/cloud. For the example case of the 
ACC optimization this tradeoff has been analyzed 
and results are summarized in Fig. 12. The take-
home-massage is that using AVL’s tool chain the 
breakeven is reached very soon, i.e. mainly after 
the cloud setup-time is compensated by the first 
results.

Fig. 11: Cluster/Cloud simulation process

Fig. 12: Cluster/Cloud execution (1250 instances, 
4 cores each) vs. local office computer (16 cores). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVL’s unique tool-chain fully covers the crucial 
step of scaling and offers simulation, evaluation 
and optimization executed on cluster/cloud 
computing. Convenient configuration abilities take 
care of specific user’s needs. as shown in Fig. 13.
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Fig. 13: Cluster/ Cloud based simulation, 
evaluation, optimization customized in tool 
frontend.

Fig. 14: Analysis of cloud based optimization. 
The plot shows exemplarily the objective rating 
of the ACC over a variation of the control 
horizon. As can be seen additional variation 
of another control parameter leads to minor 
dispersion, but main influence on over all drive-
rating is the control horizon in this example.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the example of the ACC, control parameters 
of the speed and distance control have been 
optimized with respect to KPIs defined in the 
requirements of the function as depicted in Fig. 14. 
Note that this approach inherently supports agile 
development methodologies, as they are state of 
the art within the calibration process. 

3.4 BASE VALIDATION

The optimized final calibration set from virtual 
domain in this step is now to be validated and 
cross-checked on the real vehicle in core scenarios, 
forming a so called base validation. Again, this may 
include checking variation of scenario parameters 
to also cover sensitivity mapping. This process is 
like the model-validation step during virtualization, 
which is done using correlation of closed-loop 
simulation results and evaluation of KPI’s thereof.

3.5 VIRTUAL VALIDATION

For the last step - the virtual validation - finally the 
tool-setup from optimization can be re-used, but 
instead of function parameter optimization the 
target is now to execute the full validation plan. This 
comprises a wide range of variation in parameters 
of selected test-scenarios. The validation plan 
includes an extended scenario-catalogue required 
for proving quality, safety and perceived safety of 
the vehicle. Again, cloud execution offers benefits 
in scalability by massive parallelization and 
customizability. The online evaluation of the tests 
enables direct visualization of the test-coverage 
with respect to user-defined KPI’s (Fig. 16).

In comparison to the calibration approach, which 
uses the variation of controller parameters to 
improve the performance overall, the validation 
uses the validation plan, an abstract form of 
environment variation. Both are using the same 
methods of scalability of the cluster/cloud enabled 
virtual co-simulation environment. 

In contrast to simple (fail/pass) evaluation the 
rating-based approach offers quantitative insight 

As shown in Fig. 15 also robustness analysis can be 
performed within the optimization step using the 
proposed setup.

The result of the cloud based optimization step is 
a set of optimal tuning parameters for the driving 
function. Note that, only if the optimization criteria 
considers both, standard and driving performance 
KPI’s objectifying subjective impression of the 
driver, a safe and brand specific tuning can be 
achieved.

Fig. 15: Analysis of robustness of the ACC-rating, 
against disturbances depending on the control 
horizon.
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Fig. 16: Dynamic test result and test coverage 
reports.

 

 

 

 

 

 

into overall quality and safety. This enables effective 
improvement and finally results in a consistent 
customer impression. Additional to final reports, all 
virtual tests results are collected and are available 
for detailed analysis. 

4.	CONCLUSION
After clearly stating the challenges in validating 
highly automated and autonomous vehicles, a 
combined real/virtual optimization and validation 
process was proposed and explained using an 
example.

The proposed process closely coordinates real 
and virtual optimization/validation steps. The used 
objective assessment within this method turns out 
to be the central key, enabling a high level of test-
automation, consistent quality and finally a safe 
validation. Through this the required savings in 
time and effort for the discussed example could be 
reached (testing time reduced by 80-90%).
High quality fulfilment and development efficiency, 
from target setting to validation, is guaranteed 
through measurable parameters and highly 
automated processing. The objective evaluation 
of driver feeling paves the way to best in class 
driving quality and perceived safety, which has 
already been proven in series production solutions 
SAE L0 to L2 and successfully been implemented 
at several premium OEMs. As an added value, the 
objective assessment is open to multiple suppliers 
and enables flexibility to be adapted for future 
cost- effective solutions.
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