AVL Automation & Control Solutions

AVL TESTMATE II – Digital Controller

AVL TESTMATE II is a complete digital test bed control and monitoring system with excellent torque and speed control for hydraulic, eddy current and AC dynamometers with an intuitive user interface.

AVL BOBCAT – Engine Test Automation & Control

AVL BOBCAT is an affordable and integrated automation system solution dedicated to specific engine testing needs from AVL's COMPACT product line for both existing and new test cell layouts.

AVL PUMA – Powertrain Test Automation & Simulation

AVL PUMA represents an integration platform and provides a powerful environment for all automation components for a broad range of test applications from emission certification to sophisticated vehicle simulation.

AVL COMPACTTM Ready. Set. Go.

AVL BOBCAT automation & control

Gernot HACKER, February 2013

BOBCAT automation & control **topics**

- AVL BOBCAT automation & control
- System Layout & Components
- Technical specs
- General look and feel
- Result Data Management & Processing

AVL BOBCAT – automation & control covering needs

Engine Performance Testing

Engine Durability

Engine Overhauling

Component development

Emission Certification for nonroad IC engines

Fuel validation testing

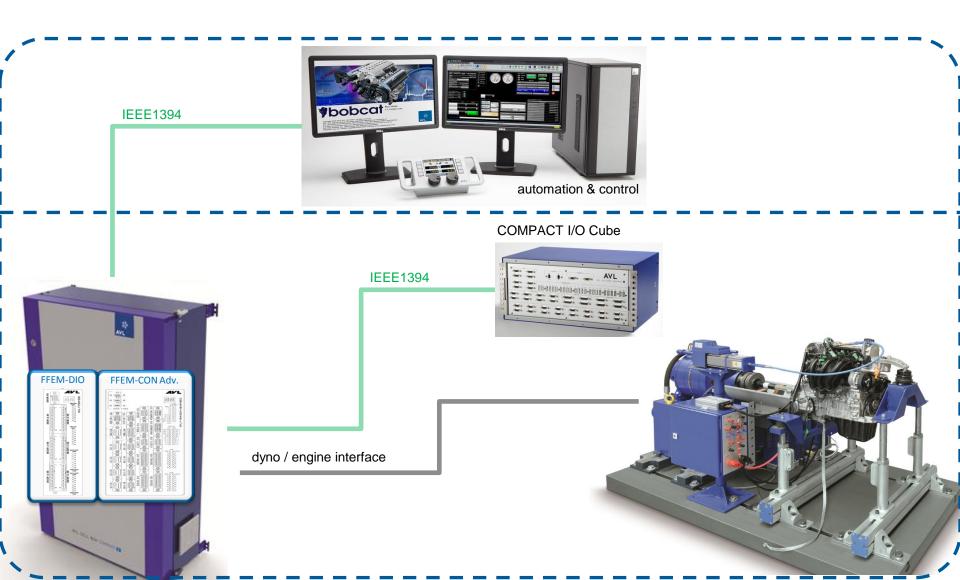
Educational Purposes

Gernot HACKER, February 2013

the COMPACT solution for test automation & control

AVL BOBCAT

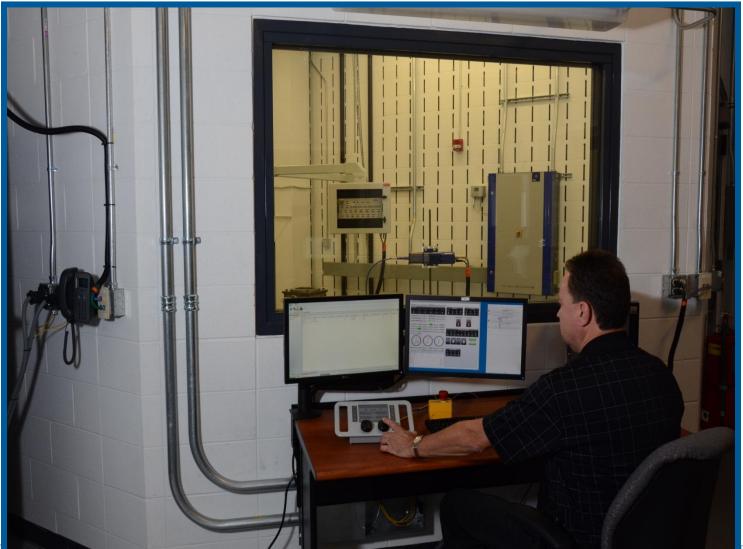
AVL BOBCAT is a test bed automation system dedicated and optimized for defined applications in engine testing, developed at AVL North America.

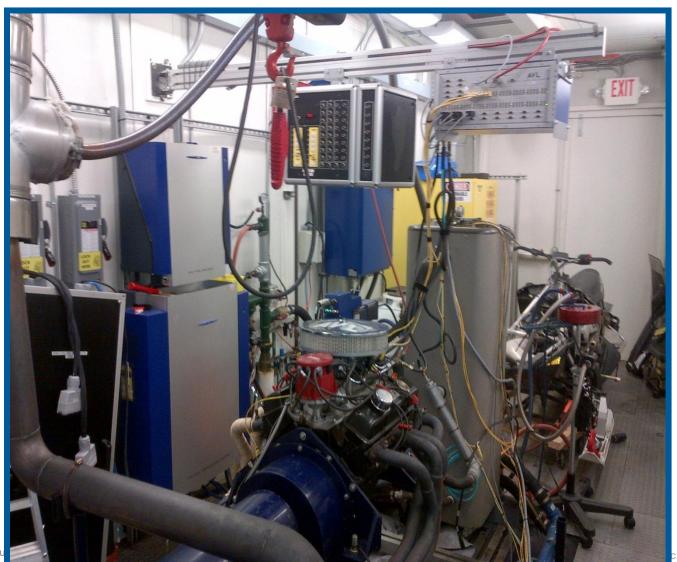

Your benefits at a glance:

- Intuitive modular structure for creating test cell, engine and test run definition and procedure configuration
- User-friendly experience driven by aesthetic display pages and graphical drag-and-drop test set-up
- Quick operation that allows test runs to be defined and reused easier and initiated faster

AVL BOBCAT – automation & control

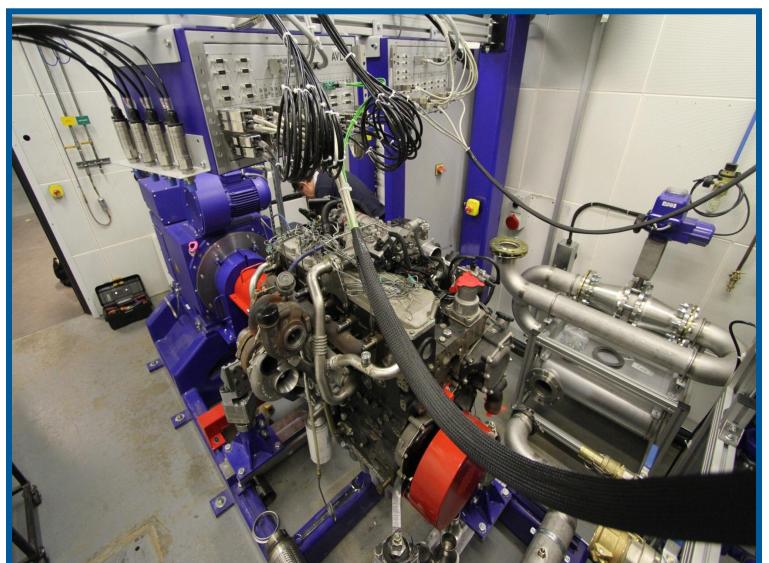
system layout





Gernot HACKER, February 2013




Gernot HACKER, Febru

Public

AVL BOBCAT – automation & control - components **WORKSTATION**

Included with the AVL BOBCAT automation & control software is a dedicated workstation. The hardware is extensively tested to ensure a failure free operation in a real time environment. As off the shelf PC solutions are limited in support and spare part availability, AVL can provide an extended warranty, to secure the full operation of the test cell.

Your benefits at a glance:

- Tested and proven workstation solution
- Extended warranty and spare parts availability
- Choice between desktop or rack design

AVL BOBCAT – automation & control - components Operating panel

The AVL BOBCAT Operating Panel provides manual control of the test cell when not running an automatic test routine. It provides easy access to the most frequently performed tasks such as changing the control mode or turning on/off digital bits. The panel contains a touch screen display, two knobs for adjusting the set point values, and eight physical pushbutton switches that can be programmed for digital control of the system. The panel can either be connected to the BOBCAT workstation or can be brought into the cell and connected to the Cell Box.

Your benefits at a glance:

- Precise control of engine & dyno set points via two rotary encoders
- Color touch screen for visual feedback & operation
- Programmable buttons for test sequences
- Connection via Ethernet outside or inside the test cell

AVL BOBCAT – automation & control - components Cell box

The AVL BOBCAT Cell Box is a wall mounted enclosure that is the center of AVL COMPACT automation & control system used for controlling the engine and dyno and connection to other test cell devices. It serves to accommodate system components. It is connected to the BOBCAT workstation and measuring devices in the testcell. An E-stop circuit (located inside the CellBox) is used to safely protect the hardware.

The Cell Box contains the following main components:

- 24VDC PWS for all the I/O in the system and circuit protection for 24 VDC lines
- Power switch and AC power distribution and circuit protection
- PILZ E-Stop system and E-Stop string
- Connector for the Operator Panel
- F-FEM-CON ADVANCED and F-FEM DIO
- Compliance to directives: Compliance with the 2004/108/EC
 Electromagnetic Compatibility Directive
 Public

AVL BOBCAT – automation & control - components Cell box

- 4 independent counter channels for data acquisition
- 18 digital inputs
- 26 digital outputs
- 4 analog inputs
- 1 analog input for strain gauge
- 4 analog outputs
- 2 frequency outputs
- 1 watchdog function for test bed monitoring
- Connection of 2 F-FEM-DIO modules with 16 digital inputs and
 - 16 digital outputs each

AVL BOBCAT – automation & control - components

The COMPACT I/O Cube is designed as a versatile I/O module for the test cell to allow data acquisition and control of a wide variety of I/O devices. The Cube provides various input and output channels. The channel assignment is software-configurable by the user.

Following channels are provided:

- 16 universal measurement channels for the measurement of voltages, currents, resistances and measuring bridges
- 24 temperature measurement channels for measurement of thermo couples
- (types K, J, R, S, T, B, E and N)
- 8 temperature measurement channels for measurement of RTDs (Pt100, Pt1000)
- 8 analog outputs for voltages or currents (for demand value setting)
- 16 digital outputs (8 relay, 8 transistor outputs for digital or PWM)
- 16 digital inputs

AVL BOBCAT – automation & control - components

TC cube

The COMPACT T/C Cube is designed as a versatile IO module for the test cell to allow data acquisition and control of a wide variety of IO devices. The Compact Thermo Cube provides 16 universal measurement channels and 64 temperature measurement channels. The channel assignment is software-configurable by the user.

Following channels are provided:

- 16 universal measurement channels can measure voltages, currents, resistances and measuring bridges.
- 64 temperature measurement channels are split into
 - 56 channels for measurement of thermo couples (types K, J, R, S, T, B, E and N)
 - 8 channels for measurement of RTDs (Pt100, Pt1000)
- The signals are first conditioned with a low pass filter and then converted to physical units and transferred to the automation system as physical units via an IEEE1394 interface.
- The acquisition rate is selectable for each channel (1Hz, 10Hz, 100Hz) depending on the sensor type (1Hz, 10Hz for temperature channels).

AVL BOBCAT – automation & control - components

cube comparison

				Signa	al Types and	Chan	nel Nu	ımber	5		
Modul Name	Type Number	Material Number	Connector Type	TC	Universal Channel Voltage ± 13,5 V, Current ± 25 mA Low Voltage ± 2.4 V, ± 75 mV TC, Resistance, DMS, RTD	Low Voltage ± 2.4 V, ± 75 mV, TC, RTD	Analog out (± 10.5 V, ± 21 mA)	Digital In	Counter"1)	Digital Out	Frequency Out*2)
TC Cube	6260.63	GK0448	DSUB-9		16	8					
			Omega	56							
I/O Cube	6260.64	GK0449	DSUB-9		16	8	8				
			Omega	24							
			DSUB-15					16	8	16	8

AVL BOBCAT – automation & control - components throttle actuator

The AVL Throttle Actuator Compact is a Linear Rotary Screw (LRS) type throttle actuator used for controlling the mechanical throttle on an engine. It is equipped with automatic range calibration for easy setup. Force , speed, displacement, and acceleration limiting and definable e-stop position ensure the maximum security and ease of use.

Throttle Actuator COMPACT	
Max. Force	890N
Linear Stroke	76mm
Time for full stroke	0.1s

AVL BOBCAT – automation & control software technical specs

Feature	Description
Operating system	Windows XP or Windows 7
Realtime operating system	INtime
Runtime states	Empty, testcell Loaded, engine loaded and test loaded
Application modes	Setup, runtime and data browsing
Modes of operation	Manual and automatic
Channels	Analog IO, digital IO, temperature, formula, filters, PID, limits, custom and dependent
Channel frequencies	1, 10, and 100 Hz (1kHz for F-FEM CON channels)
Calibration type	16-point linear fit and (cRIO only) 6th order polynomial
Calibration history	History maintained, trace maintained
	Testcell limit (monitored either in testcell load or engine loaded states), engine limit and group (monitore in when engine has started)
Limit monitoring reactions	Low and high warnings and alarms; SoftStop, HardStop, Message, Idle and Exception on alarms.
Limit Monitoring frequencies	Same frequency as the channel being monitored
	Cut-off frequency, Integrator, Value changed/not changed, moving average, invalid value and minimum/maximum/range
Maximum number of channels	4750
Maximum number of PID channels	10
Maximum number of formula channels:	Maximum flow rate (summation of all formula channel frequencies) 5000.
Maximum number of filter channels	32 of each filter types (6 filter types)
Maximum number of custom channels:	Limited by performance, not licensed
Maximum number of testcell limit Channels	128
Maximum number of engine limit channels	128
Supported number of displays	2
Maximum number of active recorders	3 concurrently activated recorders and 1 blackbox recorder.
Maximum number of recorder config	32
	1, 10, 100 Hz (1kHz for F-FEM CON channels)
Maximum number of CAN ports	8 (4 for each CAN card)
	Provide data array and its runtime dynamic switching
	Export data as CVS and ATF, and import it to Santorin database
	Speed/Position, Torque/Position, Dyno/Position, Speed/Torque, Torque/Speed, Dyno/Speed, Dyno/Speed, Dyno/Torque, Speed/Aux, Torque/Aux, Dyno/Aux (only one Aux supported)

AVL BOBCAT – automation & control software

supported devices

0) 0) 0) 0)	
AVL	

Name	Description
AVL 733S	Fuel balance meter. It is used to determine fuel consumption based on a pre-selectable measurement time or measurement weight.
AVL 735	Fuel mass consumption meter allows you to measure the fuel consumption of a combustion engine.
AVL 753C	Fuel conditioning system is used to maintain the fuel temperature at a specific setpoint, and within narrow tolerance limits. It is used together with the AVL fuel mass flow meter (AVL 735S) and AVL fuel balance (AVL 733S), and can
	also be retrofitted to existing fuel consumption measuring devices.
AVL 415	Smoke meter. It is used to measure the soot content of the exhaust gas from diesel engines.
AVL 415S	Smoke meter. It is used to measure the soot content of the exhaust gas from diesel engines.
AVL 439	Opacimeter. It is used to measure the opacity of exhaust gas both in static and dynamic engine state.
AVL 442	Blowby meter serves to continuously measure and monitor the blow by gas. The blow by gas flows through leaks of pistons, piston rings, valve guides, and in case of turbochargers through bearings and bearing seals, into the crankcase and escapes through the casing ventilation.
AVL 483	Micro soot sensor measures the low soot concentrations in the diluted exhaust gas of particle emitting combustion engines.
PEUS CFO	CFO propane injection kit. It is used to check CVS dilution systems in emission gas testing for conformity.
HMT 333	Vaisala Weather Station
PTU 300	Vaisala Weather Station

AVL BOBCAT – automation & control software

supported devices

000
AVL

Name	Descrition
CVS	A CVS (Constant Volume Sampler) dilutes the exhaust sampled from a vehicle under test on a chassis dyno or from an engine on an engine test bed. The diluted exhaust is fed into the exhaust analyzers, where the actual exhaust analysis takes place.
Simplex_LB	Simplex load bank (customer specific, not officially supported)
FMU3G	Taylor fuel measurement (customer specific, not officially supported)
Agilent	Agilent power supplier
EBH	It is used to control and communicate with AMA i60 Combi, Horiba MEXA, SESAM FTIR, CEBII bech, etc. See Puma document for more information.
Emissions Benches	It is used to interface with AVL GEM 110, Horiba Mexa 7000, and AVL i60 emissions benches
CAS/ACAP	Interfce to combustion analysis systems from MTS (A&D). It is also used to interface ACAP from MTS as well as CAS from FEV. Specific versions do apply.
SPC	The SPC is a compact partial flow dilution system that extracts engine exhaust, dilutes it with conditioned dilution air (to simulate reactions in the atmosphere), and samples the diluted exhaust over particulate filters. The filters are weighed to determine the amount of particulate matter in the exhaust.
CAN	ASAP2 CAN driver
ASAP3	ASAP3 driver
CUTY	CUTY - Communication Utility, which is enabling communication to Cummins ECUs using ASAP3. A Cummins MC System.
IndiCom	IndiCom is a user interface and control software for AVL Indicating systems.

AVL BOBCAT – automation & control programs

Load Load Save Save All	 Setup Run Me Data B 	Run the Tests on the Engine in the Testcell using the files created in Setup
	1	

AVL BOBCAT – automation & control **Setup**

0) ÷ Se	etup				bobc	at (Setup I	Mode) - McLa	aren_Cell_9	_A_with_Va	lve_charech	terizer_New	_VER_11				_ = X
0		Home T	estcell															0 -
Info Testcell Info	alog In	Analog Out	Digital In	Digital Out		PWM Channel Se	Thermocouple tup	Custom	Formula	PID	Limit	Testmate	Sequence Testo	s Devices	Recorder	All Channels Overview		
Test	cell	Informat	tion															X
Basic Informa						Load/Unic	ad Actions						_					
Name:		er testcell nam	ne				ommand on Load:	Γ	C:\Document	ic and Settin	aci áll Licer	(D						
Comment:	Ent	er comments			*													
						Run Co	ommand on Unloa	d:	C:\Document	s and Settin	igs(All User:	i\D						
						Show D	Datasheet on Loa	4:				~						
	-				*	Show D	Datasheet on Unle	ad:										
Additional Infor					_													
		Name		Use Char				Value		Unit		Data T				Description		
Requir	e	EngineSpeed	1	Use Chai	linei			SPEED		-		String	уре				gine speed chann	el.
	0	TestcellID						0001		-		String				Identifier of this		
3 🙆 🕴		ResumeTime						10		s		Long				Default Resume	time applied whe	n you pau
144 44 4 Re	cord 1	of 3 🕨 🗰	₩ + - ·	• * X 4														
McLare	en_C	ell_9_A_v	vith_Vah	/e_chared	chterize	_New_V	'ER_11											

AVL BOBCAT – automation & control setup – physical channels

- Analog Inputs
- Analog Outputs
- Digital Inputs
- Digital Outputs
- Counter Inputs
- PWM Outputs
- Thermocouples

Set the specifications of the channel

- Units
- Decimal places
- Update frequency (1, 10, 100Hz, 1kHz for FFEM-CON)
- Hardware information
- Calibration

Info stcell		og Out	igital In Digital Out	Counter PWM Channel		Custom	Form) Iula	PID Limit	Testmate S	equences Devices Testcell Setup	Record	er All Channels Overview		
No.	Analog Inpu	t Chan	Decimal Places	Update Freque	Dis-1	Rack	Slot	ID	Terminal Configurat		Signal Input Range		Calibration Type		Description
1	ALPHA	%	Decinal Places	2	100 (nz)			1 ACHO		RSE		+/-10V		Table	Description
2	OVP	%		2	100			1 ACH1		RSE		+/-10V			0=OPEN, 100=c
3	IVP	%		2	100			ACH2		RSE		+/-10V			0=OPEN, 100=c
4	TORQUE	ft-lbf		2	100			1 ACH3		RSE		+/-100		Table	- 51 614) 200-0
5		-		2	100			1 ACH4		RSE		+/-10V		Table	
6	R1_ACH5	-		2	100			1 ACH5		RSE		+/-100		Table	
7	R1_ACH6			2	100			1 ACH6		RSE		+/-100		Table	
8	R1_ACH7	2		2	100			1 ACH7		RSE		+/-10V		Table	
9	110_21010			2	100			1 ACH8		RSE		+/-10V		Table	
10	1			2	100			1 ACH9		RSE		+/-100		Table	
11		2		2	100			1 AC		RSE		+/-10V		Table	
12				2	100			1 AC		RSE		+/-10V		Table	
13		-		2	100			1 AC		RSE		+/-10V		Table	
14	1	2		2	100			1 AC		RSE		+/-10V		Table	
15				2	100			1 AC		RSE		+/-10V		Table	
16		-		2	100			1 AC		RSE		+/-10V		Table	
	R1_ACH16	2		2	100			1 AC		RSE		+/-10V		Table	
	R1_ACH17	-		2	100			1 AC		RSE		+/-10V		Table	
19	R1_ACH18			2	100			1 AC		RSE		+/-10V		Table	
20	R1 ACH19	2		2	100			1 AC		RSE		+/-10V		Table	
21	R1_ACH20	-		2	100			1 AC		RSE		+/-10V		Table	
22	R1_ACH21			2	100			1 AC		RSE		+/-10V		Table	
23	R1_ACH22	2		2	100			1 AC		RSE		+/-10V		Table	
24	R1_ACH23			2	100	1		1 AC		RSE		+/-10V		Table	
25	1			2	100	1		1 AC		RSE		+/-10V		Table	
26		-		2	100	1		1 AC		RSE		+/-10V		Table	
27	1	-		2	100			1 AC		RSE		+/-10V		Table	
28				2	100			1 AC		RSE		+/-10V		Table	
29		2		2	100	1		1 AC		RSE		+/-10V		Table	
30		-		2	100	1		1 AC		RSE		+/-10V		Table	
31	1	*		2	100	1	1	1 AC		RSE		+/-10V		Table	
32		2		2	100	1		1 AC		RSE		+/-10V		Table	
33	P_OIL_CNTL	psi		2	100	1	2 4	4 ACHO		RSE		+/-10V		Table	
34	P_H2O_CNTL	psi		2	100	3	2 4	4 ACH1		RSE		+/-10V		Table	
35	XDUCER_3	psi		2	100	1	2 4	ACH2		RSE		+/-10V		Table	
	XDUCER_4	psi		2	100		2 .	4 ACH3		RSE		+/-10V		Table	

AVL BOBCAT – automation & control setup – formula

a S AVL

- Uses scripting language for writing simple or complex formulas
- To be replaced with a simple formula editor (conceptually to be like formula editor in Excel)
- Can update formulas at 1, 10, or 100 Hz

Analog In Analog Out Digital Ir	Digital Out C	Ounter PVM Thermocouple Custom Channel Setup	Formula PID	Limit Testmate Sequences Testmate Sequences		s Recorder All Cha			
Formula Channels	of 5000.								
Channel Name	Unit	Decimal Places	Update Frequency [Hz]		1	Formula	Description		
BHP	-	2			10 p	oower			
NormalizedSpecificGravity	121	2			1 1	NormSPG			
FuelFlowPPH	-	2			1 F	=FPph			
BSFC	(41)	2			1 F	FuelFlowPPH/BHP			
SaturatedVaporPress	-	2			1 5				
CurrentVaporPress	•	2			1 0	0.000367*(1+0.00064			
CorrectedVaporPress	121	2			1 9	SaturatedVaporPress			
CorrectedBaro		2			1 F	BARO-CorrectedVap			
REB	-	2			1 r	REB			
AFRATIO	12	2			1 0)			
StarterStop	-	2			1 1	oSjarter 🜷	η		
OilTempCO	%	3				DilCO			
H2OTempCO	%	2		Formula Script:					
VehicleSpeed	-	2		Formula Script:					
Eng_Timer	121	2		dim bStarter as long	2				
DynoSafetyWaterShutOff	-	2		ann obtailter as long					
Nul	-	0		temp=Starter					
CalcuateMValue	121	2		comp-blarcer					
CalcuateInletValveCh	-	2		bStarter=0					
CalcuateOutletValveCh	23	2							
FakeCatDataCalc	-	2		if(Starter==1) then if(SPEED>=Engin	-	. In	- 0.0		
				Starter=0 bStarter=1 endif endif					
				Formula:					
				bStarter					
				Check			ОК	Canc	
McLaren_Cell_9_A_with_Val	ve_charecht	erizer_New_VER_11		-					

AVL BOBCAT – automation & control setup – devices

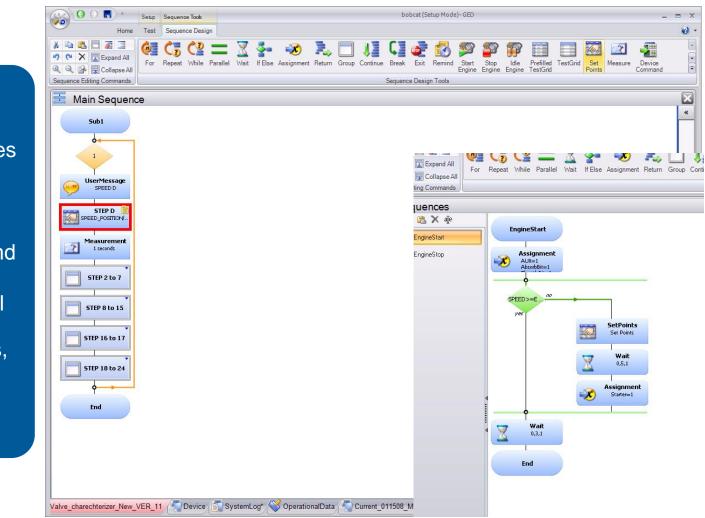
- GUI for device driver allows setup of the device and the measurement channels for the device
- Channels from devices can be used throughout BOBCAT
- Device driver GUI's will be added as customers request them and then will be available as standard devices

O O R - Seap			bo	bcat (Setup Mode)	-Device		_ =	1 3
Home Testce	H							0
Info tcell Info	ital In Digital Out Counter PWM Channel Setu	Thermocoup up	ple Custom Formula	PID Limit	Testmate	Sequences Devices Recorder Testcell Setup	All Channels Overview	
Devices								E
x	IndiCom	_	Connection Type					
2 IndiCom	Description Indi Com Device		© RS232		TCPIP			
	Time Out 5000 r	ms	Serial Port Baud Rate 9600 Parity None Bit Count 8 Stop Bits 1	× × ×	IP Compute Port	192 . 168 . 0 . 110		
	From-Device Channels							
	Channel Name 1 IndiCom_IMEP1	Unit	Decimal Places	2 Float	e	Device Internal Name IMEP1	Description	-
	2 IndiCom_IMEP2	-		2 Float		IMEP2		-
	3 IndiCom_IMEP3	÷		2 Float		IMEP3		
*	4 IndiCom_IMEP4	5		2 Float		IMEP4		_
	5 IndiCom_IMEPL1	- 2		2 Float		IMEPL1		
	6 IndiCom_IMEPL2 1 7 IndiCom_IMEPL3	-		2 Float 2 Float		IMEPL2 IMEPL3		
	8 IndiCom_IMEPL4	-		2 Float		IMEPL4		
	9 IndiCom IMEPH1	2		2 Float		TMEPH1		
						Select Device		
						Name	Description	
						2 IndiCom	IndiCom device AVL Smokemeter 4155 AVL Smokemeter 4155 AVL Blowby 442 AVL Fuelbalance 7335 AVL Fuelbalance 7335 AVL Fuel Conditioning 753C Gem110 emissions device Combustion Analysis System	

OK

Cancel

AVL BOBCAT – automation & control calibration



	e e 🤤										bobcat (Run	Mode) : Devi	e					x c
si art	Home Tes	Stop	Channels Construction Testruction		Pause	Jser Lo Bystem Operatio	Log	23	Combine Reference Sequence System	d Channe	300. 17507 08	C Unload		creen3 V			-	
	Analog Ir	nput (han	nels														
	Channel N	V	0	Decimal Pl	Update Frequency .				Raw V.	. Raw.	Terminal	Configura	Signal Input R	Calibration	Descri	Ove	Override Scaled Value	
	Analog_Inpu	100	-	2		100	1	1.	. 100000) V		Differentia	+/-10	V Table 🌷			1)
	Analog_Inpu	100	20	2		100	1	1.	. 100000) V		Differentia	+/-10	V Table			1)
	Analog_Inpu	100		2		100	1	1.	. 100000) V		Differentia	+/-10	V Table)
	Analog_Inpu	100	-3	2		100	1	1.	. 100000	o v		Differentia	+/-10	V Table				
	Analog_Inpu			2		100	1	1.	. 100000) V		Differentia	+/-10	V Table				
	Analog_Inpu			2		100	1	1.	. 100000	o v		Differentia						
	Analog_Inpu			2		100	1		. 100000			Differentia					1 0	
	Analog_Inpu			2		100	1		. 100000			Differentia						
			-	2		100	1		. 100000			RSE						
0			26	2		100	1		. 100000			RSE						
1			-	2		100	1		100000			RSE					-	
2			_	2		100	1		. 100000			RSE						
3				2		100	1		100000			RSE	2.33					331
3 4				2		100	1		100000			RSE						
5				2					100000	¥		KJI	P/-10				-	
6						Calib	oration	Туре										
				2														
	Analog Topu	0.00	-	2		• T	able		O Poly	iomial								
7	Analog_Inpu		-	2		• T	able		O Poly	omial								
7 8	Analog_Inpu	0.00	-	2			2 ALANK	nt Lena			+ & F	Q.Q. []) 4			Use	er Name:	
7 8 9	Analog_Inpu Analog_Inpu	0.00 4.00	-	2 2 2 2		Meas	uremer	nt Leng	:h: 5]s (+ 🔅 🖸	ର୍ ବ୍ 🗆	۶II				er Name: iknown User	
7 8 9	Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100		2 2 2 2 2		Meas	uremer ent Ave	erage V	:h: 5 : alue: 10000]s (+ 🍳 🔛 Raw:	QQ		led: 100000000	10.00	Un		
7 8 9 :0 :1	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100	70	2 2 2 2 2 2 2		Meas	uremer ent Ave		:h: 5 : alue: 10000]s (led: 100000000	0.00	Un	iknown User	
7 8 9 0 11	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100	- -	2 2 2 2 2 2 2 2 2		Meas	uremer ent Ave ommit	erage V	th: 5]s 000000.0	Raw:			led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100	- - -	2 2 2 2 2 2 2 2 2 2 2 2		Meas	uremer ent Ave ommit Raw	erage V	:h: 5 : alue: 10000 row 16 Scaled [-]s 000000.0				led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100	- - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Meas Curre	ommit	erage V	th: 5 : alue: 10000 row 16 Scaled [- 0]s 000000.0	Raw: 45.0	10000000000.		led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3 4 5	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100	- - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Meas Curre 1 2	ent Ave ommit Raw 0	erage V	th: 5 : alue: 10000 row 16 Scaled [- 0 1]s 000000.0	Raw:	10000000000.		led: 100000000	0.00	Un	iknown User	
7 8 9 0 10 11 2 3 3 4 5 5 6	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100	- - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Meas Curre 1 2 3	ent Ave ommit Raw 0 1 2	erage V	th: 5 : alue: 10000 row 16 Scaled [- 0 1 4]s 000000.0	Raw: 45.0			led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3 4 4 5 5 6 6 7	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100	- - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Meas Curre 1 2 3 4	ent Ave ommit Raw 0 1 2 3	erage V	th: 5 alue: 10000 row 16 Scaled [- 0 1 4 9]s 000000.0	Raw: 45.0 40.0 35.0			led: 100000000	0.00	Un	iknown User	
7 8 9 0 10 11 2 3 3 4 5 5 6	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100	- - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Meas Curre 1 2 3 4 5	euremer ommit Raw 0 1 2 3 4	erage V	th: 5: alue: 10000 row 16 5caled [- 0 1 4 9 16]s 000000.0	Raw: 45.0 40.0 35.0 30.0			ied: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3 3 4 5 5 6 6 7 7 8 8	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100	- - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x (Meas Curre C 1 2 3 4 5 6	ent Ave ommit Raw 0 1 2 3	erage V	th: 5 alue: 10000 row 16 Scaled [- 0 1 4 9]s 000000.0	Raw: 45.0 40.0 35.0 30.0			led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3 3 4 5 5 6 6 7 7 8 8	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100	- - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x (Meas Curre C 1 2 3 4 5 6 7	Raw 0 1 2 3 4 5	erage V	th: 5: alue: 10000 row 16 5caled [- 0 1 4 9 16 25 36]s 000000.0	Raw: 45.0 40.0 35.0 30.0			led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3 3 4 5 5 6 6 7 7 8 8	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100	- - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	× (Meas Curre C 1 2 3 4 5 6	Raw 0 1 2 3 4 5 6	erage V	th: 5: alue: 10000 row 16 5caled [- 0 1 4 9 16 25]s 000000.0	Raw: 45.0 40.0 35.0 30.0			led: 100000000	0.00	Un	iknown User	
7 8 9 0 1 2 3 3 3 4 5 5 6 6 7 7 8 8	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x (Meas Curre Curre 1 2 3 4 5 6 7 8 9	Raw 0 1 2 3 4 5 6 7 -1	erage V	th: 5 : alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49]s 000000.0	Raw: 45.0 40.0 35.0 30.0			led: 100000000	0.00	Un	iknown User	
7 8 9 0 11 1 2 3 3 4 4 5 5 6 6 7 7 8 8 4 4 4	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	X (Message	Meas Curre 1 2 3 4 5 6 7 8 9 10	Raw 0 1 2 3 4 5 6 7	erage V	th: 5 : alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49 1]s 000000.0	Raw: 45.0 40.0 35.0 30.0 			led: 100000000	0.00	Un	iknown User	
7 8 9 0 11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 8 4 4 4 4 1 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100	- - - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Meas Current C	Raw 0 1 2 3 4 5 6 6 7 7 -1 -2	erage V	th: 5: alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49 1 4]s 000000.0	Raw: 45.0 40.0 35.0 30.0 25.0 25.0 20.0 15.0			led: 100000000	0.00	Un	iknown User	
7 8 9 9 0 11 1 2 2 33 44 5 5 6 6 7 7 8 8 8 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100 100	- - - - - - - - - - - - - - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Message	Meas Curre 1 2 3 4 5 6 7 8 9 10 11 11 12	uremer ommit Raw 0 1 2 3 4 4 5 6 6 7 7 -1 -2 -3	erage V	th: 5: alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49 1 4 4 9]s 000000.0	Raw: 45.0 40.0 35.0 30.0			led: 100000000		Un	iknown User	
7 8 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 6 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 7 7 8 8 7	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu	0.00 4.00 100 100 100 100 100 100 100	- - - - - - - - - - - - - - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Message Test Parameters [f	Meas Current C	uremer ommit 2 3 4 5 5 6 7 7 -1 -2 -3 -4	erage V	th: 5 alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49 1 1 4 9 16 25 36 49 1 1 4 9]s 000000.0	Raw: 45.0 40.0 35.0 30.0 25.0 25.0 20.0 15.0			led: 100000000		Un	iknown User	
7 8 9 9 0 0 11 1 2 3 3 4 4 5 5 6 7 7 8 8	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Time 2006-02-11 09:5 2008-02-11 10:5	0.00 4.00 100 100 100 100 100 100 100 100 100	- - - - - - - - - - - - - - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Message Test Parameters [f Failed to display C:	Meas Current C	Ruremer Ave ommit 2 3 4 5 6 7 7 -1 -2 -3 -4 -5	erage V	th: 5 alue: 10000 row 16 5 Scaled [- 0 1 4 9 16 25 36 49 1 4 9 16 25]s 000000.0	Raw: 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0			led: 100000000		Un	iknown User	
7 8 9 9 0 1 1 2 3 3 4 4 5 6 6 7 8 8 7 8 8 7 2 2 2 2 2 2 2 2 2 2 2 2 2	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Malog_Inpu	0.00 4.00 100 100 100 100 100 100 100 100 100 100 100	- - - - - - - - - - - - - - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Message Test Parameters [f Failed to display C: Assembly 'BobCatC	Meas Currer C 1 2 3 4 5 6 7 8 9 9 10 11 12 3 4 5 6 7 8 9 9 10 11 12 13 14 5 16 10 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	Raw 0 1 2 3 4 5 6 7 -1 -2 -3 -4 -5 -6 -7	erage V	th: 5 alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49 1 4 9 16 25 36 49 1 1 4 5 5 36]s 000000.0	Raw: 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0			led: 100000000		Un	iknown User	
7 8 9 9 0 11 2 2 3 3 44 5 5 6 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 7 7 8 8 7	Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Analog_Inpu Imme 2008-02-11 09: 2008-02-11 10: 2008-02-11 10: 2008-02-11 10: 2008-02-11 10:	0.00 4.00 100 100 100 100 100 100 100 100 100 100 100	- - - - - - - - - - - - - - - - - - -	ent bcat reens reens	Message Test Parameters [f Failed to display Ca Assembly BobCatO Failed to display Ca	Meas Current C 1 2 3 4 5 6 7 8 9 9 10 11 11 2 8 9 9 10 11 11 2 2 3 4 4 5 6 7 8 9 9 10 10 11 12 2 3 4 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10	Raw 0 1 2 3 4 5 6 7 -1 -2 -3 -4 -5 -6 -7	erage V	th: 5 alue: 10000 row 16 Scaled [- 0 1 4 9 16 25 36 49 1 4 9 16 25 36 49 1 1 4 5 5 36]s 000000.0	Raw: 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0			led: 100000000	0.00	Un	iknown User	

- Calibrate analog input channels
- Up to 16 point calibration possible
- Done during runtime so sampling actual points possible
- Can vary the sample time for accurate snapshot of point
- Calibration is applied immediately to the channel

AVL BOBCAT – automation & control sequence/test run editor

- Create test sequences quickly and easily
- Can be simple or complex
- Uses simple "drag and drop" technology
- Create loops, parallel paths, sub routines, grids, measurements, etc.

AVL BOBCAT – automation & control recorder

2008-02-11 09:03:38.937 Pendant

Test

008-02-11 09:03:38.968

Failed to re-connect to the operator panel

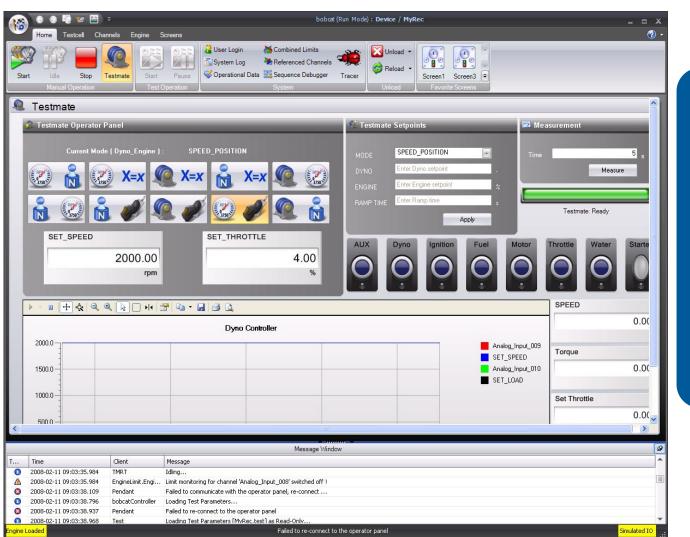
Loading Test Parameters [MvRec.test] as Read-Only

م م ک ک

- Can view the Application Recorder in Run Mode
- Can add Application Recorder channels to the plot
- Can zoom, pan, print, and save the plot

Recorder	Throttle Sub2 S	ub3 💌								
	Tuning	Sequences		Devices			_		_	
Applicatio	Channel Name		Value	Unit						
	EpochTime		1202741862		Device Internal	Channel Type Internal		Description		
V	TimeMicroSec		1202741862	s µs	Internal	Internal		EpochTime FimeMicroSec		
	EngineStartedRecognition	Speed	600	rpm	Internal	Internal		TimeMicroSec EngineStartedRecognitionSpeed		
	EngineStarted		-2147483648	-	Internal	Internal		EngineStarted EngineStarted		
	IoStatus	1	-	Internal	Internal		IoStatus			
	ParamStatus		3		Internal	Internal	F	ParamStatus LimitStatus		
	LimitStatus		2	2	Internal	Internal	L			
 Record 2 of 	111 → → → + -	•								
	🔲 H4 🚰 🖬 - 🖟	🖌 🎒 💁 🕞 Frequ	ency 1 Hz Sta			L 🗘 s 🔲 OverSampling	Plot Selected Channe	elc		
1.0 <u>-</u>										
0.0										
0.0 -										
).0										
09:57:33	09:57:34	09:57:35	09:57:36 09	1:57:37 09:1 Time	57:38 09:57:39	09:57:40	09:57:41 09:	57:42 09:5		
					WANNAMESTATION					

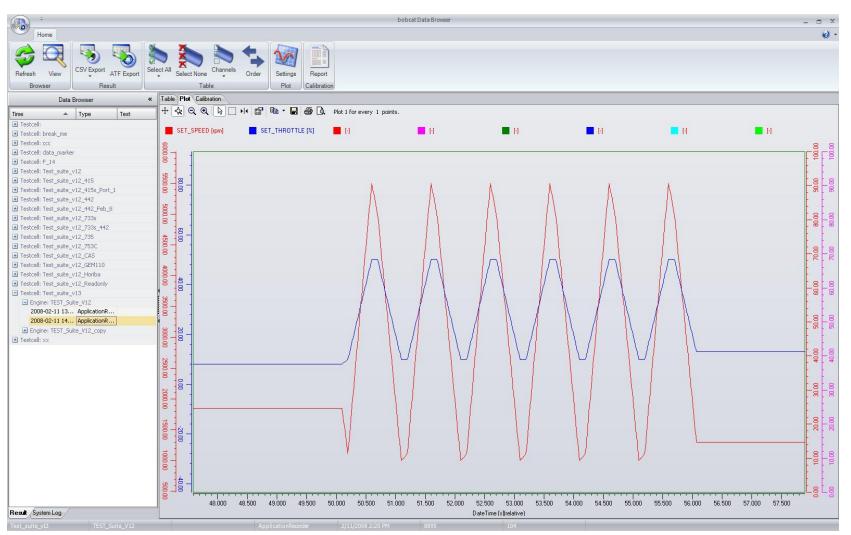
Test Parameters [MyRec.test] loaded


mulated

AVL BOBCAT – automation & control screen builder

AVL BOBCAT – automation & control run mode

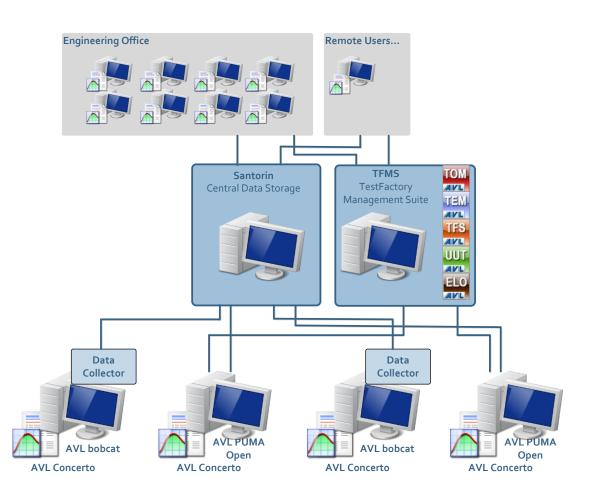
- View status and control in Run Mode
- Change operating modes and setpoints
- Toggle digital output bits
- View input and output signals on chart object
- Integrated with optional Operator Panel


AVL BOBCAT – automation & control data browser

🐻 🔔				bobcat Data Bro	wser							<pre></pre>
Home Refresh View CSV Export ATF Export	ect All Select No	ne Channels	Order Setti	ngs Report								U
Browser Result		Sele	Name			*	Unit					
Data Browser «	Table Plot (C									1	1	1
Fime 🔺 Type Test	DateTime [DateTime]	Ep 🔽 [s]	A_34_ftlbs				ft_lbs		artec	DataMarker [-]	ControllerHI [-]	Measurm [-]
Testcell:	2008-01-28	1	A_34_ftlbs.Max A 34 ftlbs.Min				ft_lbs ft_lbs					1.2.2.
Testcell: AVLDemo	2008-01-28	1	A 34_ftlbs.StdDev				ft_lbs					
Testcell: BlackBox	2008-01-28	1	AbsorbBit	r			10_05					
Testcell: current_062807	2008-01-28	1	AFRATIO									
Testcell: Device	2008-01-28	1	Age_Cycle				-					
Testcell: GrazDemo	2008-01-28	1	AI_17				psi					
Testcell: McLaren_Cell_9_A_with_Valve_charec Testcell: MvRec	2008-01-28	1	AI 17.Max				psi		0) (2435	
Testiteii: MyRec Engine: MyRec	2008-01-28	1	AI_17.Min				psi) () 2436	
2008-01-25 1 Application	2008-01-28	1	AI_17.StdDev				psi		0) (2437	
2008-01-28 0 Application	2008-01-28	1	AI_18				inHg		0) (2438	
2008-01-28 0 Application	2008-01-28	1	AI_18.Max				inHg		0) () 2439	
2008-01-28 1 Application	2008-01-28	1	AI_18.Min				inHg		0) () 2440	
2008-01-28 1 CustomRec	2008-01-28	1	AI_18.StdDev				inHg		0) () 2441	
2008-01-28 1 Application	2008-01-28	1	AI_19				inHg		0) () 2442	
2008-01-28 1 Application	2008-01-28	1	AI_19.Max				inHg		0) 2443	
2008-01-28 1 Application	2008-01-28	1	AI_19.Min				inHg		0			
2008-01-28 1 Application	2008-01-28	1	AI_19.StdDev				inHg		~			
2008-01-28 1 Application	2008-01-28	1201533857	37534	600.00	0	1	2	0	- c			
2008-01-28 1 Application	2008-01-28	1201533857	47547	600.00	0	1	2	0	0			
2008-01-28 1 Application	2008-01-28	1201533857	57535	600.00	0	1	2	0	0			
2008-01-28 1 Application	2008-01-28	1201533857 1201533857	67548 77536	600.00	0	1	2	0	0			
2008-01-28 1 Application	2008-01-28	1201533857		600.00 600.00	0	1	2	0				
2008-01-28 1 Application	2008-01-28	1201533857	87564 97579	600.00	0	1	2	0				
2008-01-28 1 Application	2008-01-28	1201533857	107572	600.00	0	1	2	0				
2008-01-29 1 Application	2008-01-28	1201533857	117536	600.00	0	1	2	0	0			
2008-01-29 1 Application	2008-01-28	1201533857	127539	600.00	0	1	2	0		5		
2008-01-29 1 Application	2008-01-28	1201533857	137534	600.00	0	1	2	0	Ċ			
2008-01-29 1 Application 2008-01-29 1 Application	2008-01-28	1201533857	147543	600.00	0	1	2	0	, C			
	2008-01-28	1201533857	157539	600.00	0	1	2	0	0			
2008-01-29 1 Application 2008-01-29 1 Application	2008-01-28	1201533857	167537	600.00	0	1	2	0	0			
2008-01-29 1 Application	2008-01-28	1201533857	177537	600.00	0	1	2	0	0			
2008-01-29 1 Application	2008-01-28	1201533857	187537	600.00	0	1	2	0	C			
esult /System Log /		ecord 1 of 558	> >> ++ +-	v x 4	10							•
John Oyeren Lug	Code all the N								_			

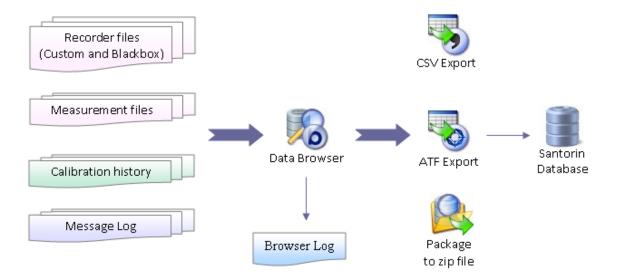
- Can pick and choose the channels to be selected and exported
- Can export as few or as many channels as desired

AVL BOBCAT – automation & control data browser



Gernot HACKER, February 2013

AVL automation & control – BOBCAT & PUMA platform

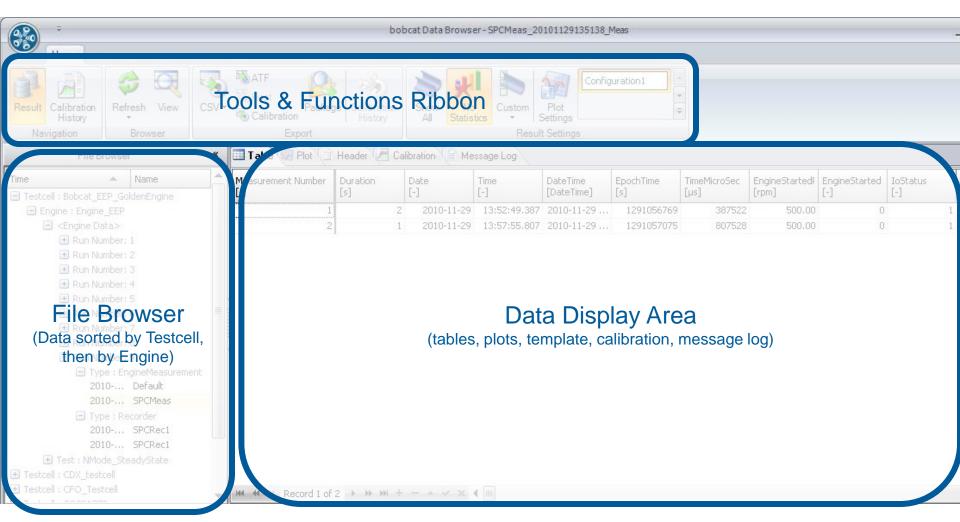


 BOBCAT can coexist in the testfield with PUMA Open

 Data logged at BOBCAT can be stored at Santorin central host by using a Data Collector interface

BOBCAT automation & control data browser

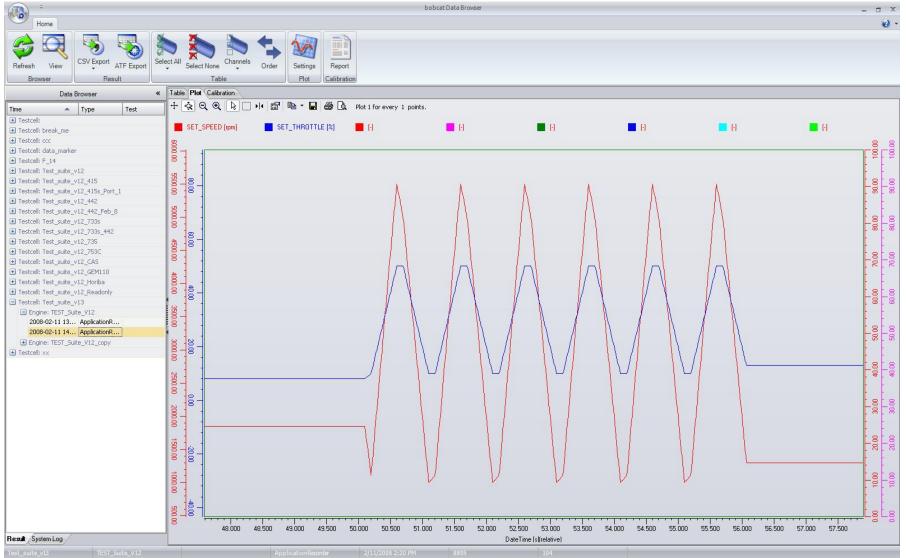
Data Browser that can be used to view the result data files (custom recorder, blackbox recorder and measurement files)


The browser provides a better analytical view of the data displaying it in different formats, such as tables and plots

The browser can be used to **export the data files** to CSV (Comma Separated Values) or ATF (ASAM Transport Format) formats, or to a Santorin database. The data files can also be packaged into zip files for distribution

The Data Brower browser logs details of all errors during operations, such as loading of data files to an <u>error log</u> which can be viewed in the browser itself. The browser can also be used to <u>view calibration history</u> and message log

BOBCAT DataBrowser user interface



BOBCAT DataBrowser table

500	 bobcat Data Browser - SampleResults_20101111105759_CustRec 													
Result	Calibratian Referate View CSVa			ATF Host Calibration Export			Show All Statistics Result Settings			-				
	File Brows	er	*			🗄 Header 🛃	Calibration							
ime	A (+) Run Number; (Name	•	RecordingTime [s]	amp	BagAnalysisSta [-]	Pressure_CFO. [kPa]	Pressure_CFO [kPa]	Volflow_CFO_C	Temp_CFO_Blc [K]	Volflow_CFO [l/min]	SPEED [rpm]	TORQI [Nm]	
	🗄 Run Number: 1			landari (0 0	0	567.0000	100.1234	0.00	328.0000	0.0001	1000.37		
	🕀 Run Number: 1	9		0.	1 0	0	567.0000	100.1234	0.00	328.0000	0.0001	1000.27		
	🕒 Run Number:	14		0.3	2 0	0	567.0000	100.1234	0.00	328,0000	0.0001	1000.17		
	🛨 Run Number:	15		0.3	3 0	0	567,0000	100.1234	0.00	328.0000	0.0001	1000.07		
	🛨 Run Number:	16		0.4	- 21	0	567.0000	100.1234	0.00	328.0000	0.0001	999.97		
	🕀 Run Number:	17	-	0.9	5 0	0	567.0000	100.1234	0.00	328.0000	0.0001	999.87		
	🕀 Run Number: :	5 G (S		0.0	6 0	0	567.0000	100.1234	0:00	328.0000	0.0001	999.77		
	🕀 Run Number: :		Ê	0.1	7 0	0	567.0000	100.1234	0.00	328.0000	0.0001	999.67		
	🗄 Run Number: :	2003		0.3	8 0	0	567.0000	100.1234	0.00	328.0000	0.0001	999.57		
	🗄 Run Number: :		≡	0.4	9 0	0	567.0000	100.1234	0.00	328.0000	0.0001	1000.47		
	🕀 Run Number: :		l l		1 0	0	567.0000	100.1234	0:00	328.0000	0.0001	1000.37		
	🕀 Run Number: :			1.	1 0	0	567.0000	100.1234	0.00	328.0000	0.0001	1000.27		
	 Run Number: Run Number: 			1.:	- 20-	0	567.0000	100.1234	0.00	328.0000	0.0001	1000.17		
	Run Number: : Run Number: :			1.		0	567.0000	100.1234	0.00	328.0000	0.0001	1000.07		
	Run Number:	No. 1		1.4		0	567.0000			328.0000	0.0001	999.97		
	Run Number:			1.5	-	0	567.0000	100.1234	0.00	328.0000	0.0001	999.87		
	Run Number:			1.0		0	567.0000	100.1234	0.00	328.0000	0.0001	999.77		
	Run Number: 1	2.745		1.7	7 0	0	567.0000	100.1234	0.00	328.0000	0.0001	999.67		
	🗄 Run Number: :			1.3		0	567.0000			328.0000	0.0001	999.57		
	🛨 Run Number; i		_	а ,	n n	1 of 1051	► + -	100 1994	0.00	220 0000	0.0001	1000 47	Þ	
	🕂 Run Number: 1	89			(ocord	10,1001	Second II			1			100	

BOBCAT DataBrowser plot

BOBCAT DataBrowser data export

	bobcat	t Data Browser-
CSV •	ATF Host Calibration	Calibration History
« Е	Export <u>E</u> ntire File Export <u>S</u> elected Channels Partial Export	
	combined Export	

Using the Data Browser, it is possible to export result files and calibration history to **CSV and ATF files**. It is also possible to export result data to a **Santorin host** using the Data Browser.

BOBCAT DataBrowser 2 new functions

...Data Comparison Mode

overlay up to 25 data files with a single click export the average data

... Manage configurations for automatic reporting

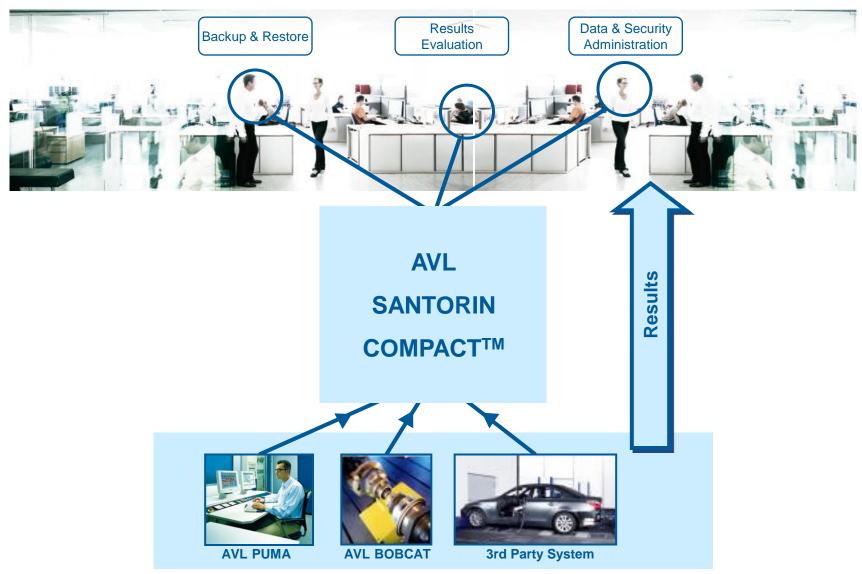
define up to 5 tables and 5 plots and generate a report based on a user definable template window

...Data Binning

create a new data file based on a reference channel This is helpful when the result file contains multiple runs of the same ramp, and the user would like to get an average value of all the runs based on specific rpm values

...Data Splitting

split a data file into multiple files based on a reference channel. This is helpful when the result file contains multiple runs of the same ramp, and the user would like to overlay all the ramps


...Formula Calculator

create up to 20 calculated channels per configuration with the easy to use formula calculator ... Data Browser Test Block

Perform data binning, Open the latest data set and Automatically print the template using the default printer directly out of the testrun

PRODUCT POSITIONING - SANTORIN COMPACT™

Gernot HACKER, February 2013

APPLICATIONS – RESULTS EVALUATION

- □ Comparable result data from different sources enables the comparison of results across the entire test facility with test bed from different suppliers.
- Common data evaluation based on common normnames / units is ensured by automatic data conversion during the import for PUMA Open, EDACS and 3rd party test beds
- □ SANTORIN COMPACTTM in combination with CONCERTO provides a seamless workflow from result data storage to result data visualization.

APPLICATIONS – BACKUP & RESTORE

- □ The automatic and time trigged data backup includes all result data stored in the SANTORIN COMPACT[™] data base.
- □ In case of an unexpected damage of the hardware or in case of data loose the guided restore helps you to re-establish your SANTORIN COMPACT[™] and the stored result data.

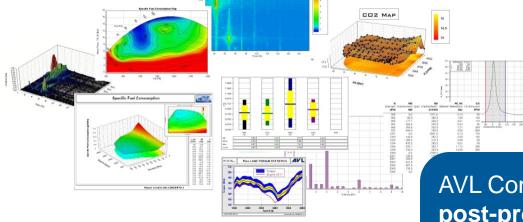
AVL BOBCAT

3rd Party System

AVL

APPLICATIONS – DATA & SECURITY ADMINISTRATION

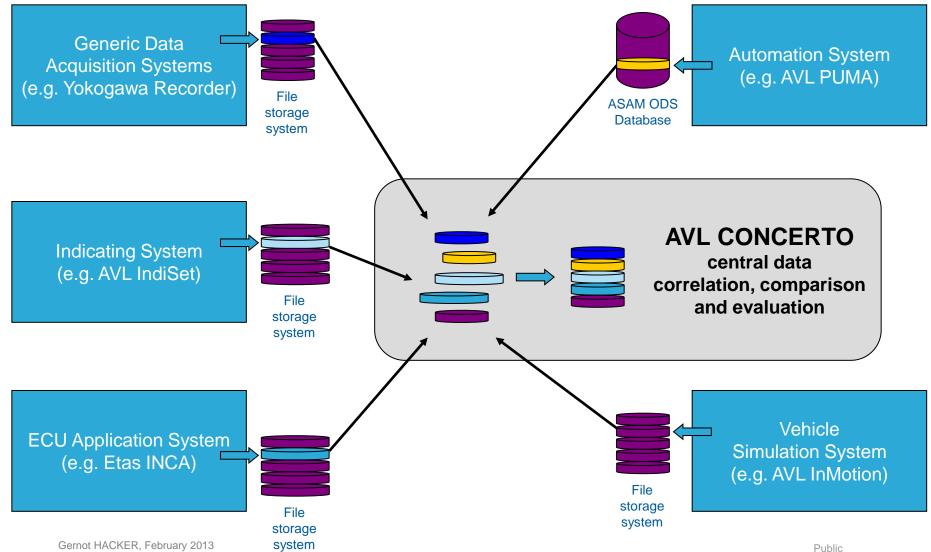
- Central management of project access rights and user accounts throughout the test facility ensures secure and consistent project operation.
- Easy integration into enterprise's IT environment is ensured by using proven standards like Oracle database, MS Windows Server software and TCP/IP.



AVL BOBCAT

3rd Party System

BOBCAT automation & control **CONCERTO**



AVL Concerto is a **generic data analysis & post-processing tool**. It is a standalone product which is independent of BOBCAT.

Concerto includes an extensive collection of file format filters, providing you with <u>access</u> to data from both AVL and non-AVL test systems and instruments.

To correctly access bobcat data, a minimum version of 4.3 is required.

CONCERTO post-processing platform

