Gas Exchange in Internal Combustion Engines

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 1 / 20

Accurate determination of important gas exchange parameters directly at the test bed based on existing measured values

Dr. Robert Fairbrother, development simulation GCA Dipl.-Ing. Fernando Moreno Nevado, development gasoline engines, Dr. Thomas Leifert, product management GCA

AVL List GmbH

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 2 / 20

Contents

§ Principle

- § Analysis
 - § Combustion
 - § Gas exchange
 - § Losses
- § Test bed: an example
- § Conclusion

AVL GCA : Working Principle and Motivation

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 4 / 20

AVL GCA : Working Principle and Motivation At the test bed In the simulation Highly relevant, non-measurable in-cylinder parameters are made available (e.g. internal AGR). - Accuracy high þ - Calibrating effort low þ - Calculation time low b Reduced AVL BOOST Model . IB2 MP3 Intake pressure curve Combustion analysis Cylinder pressure curve /Exhaust pressure curve

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 5 / 20

AVL **AVL GCA : the Virtual Sensor** 0,51200 113532 107191 - Hustike (1995) وتعالى Alberta E MARY BUUNC F F 1964 0.58 ∕₽A GCA. ла (Ра 01079 -0.48 161.7 1.1-1 Measurements FIL WORK Δ6 0.010 12. 12.271 -0,41655 004 0002 43,044004 -70208 FLEL DERICA -7 0078 -0.02 -0112-2-21.525 -11 17/50 Automatical transfer of the ₹17÷°n $\{i \neq 0 \}$ Extract and display measuring data to the 21,7125 of results in IndiCom single cylinder-model 1,1,50 10.85 0,7500 0,0025 0,2750 ONLINE at the test ce 405 2041 - 451 - 495 - 271 - 571 - 51 625 2.00 O 2003/2008 MR. List Greent Advanced Contouriest Analysis Bullings C1 MP4 MP3 IB2 IB1 Thermodynamic MP6 MP5 calculation boost

Workflow

Combustion Analysis

Gas Exchange Analysis

Loss Analysis

Ideal engine

Real charge

Combustion position

Unburned

Burn profile (ROHR)

Mixture properties

Wall heat

Blow by

Ideal gas exchange

Real gas exchange

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 10 / 20

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 11 / 20

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 12 / 20

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 13 / 20

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 14 / 20

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 15 / 20

Results at speed 2000 rpm, BMEP = 2 bar, $\lambda = 1$

Increasing valve overlaping means:

- Increase of total mass and residual gas at IVC
- Lower amount of fresh charge
- Increase of residual gas content
- Lower specific fuel consumption
- Increase of efficiency

Solution: Loss Analysis

Mixture properties Wall heat Efficiency +2%

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 17 / 20

Wall Heat Loss

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 18 / 20

Mixture Properties

Conclusion

Accurate determination of important gas exchange parameters directly at the test bed based on existing measured values

Gas Exchange in Combustion Engines 7. & 8. Nov 2007 | Page 20 / 20