DAIMLER

Kontin, S., Kettmann, N., Hermann, T.
Urea to Ammonia Preparation for SCR-Systems in
Commercial Vehicles – Fundamentals and Demands within
the Product Development
Ludwigsburg, February 20th, 2018

Daimler Trucks

Governing Process Steps Overview of Phenomena

- Ideally spray preparation w/o
 - wall contact / wall film
 - solid by-products
- In reality restrictions by
 - packaging
 - · spray quality
 - low temperatures
- Aggregate trade-offs
 - backpressure
 - costs

Required Energy for Preparation

Stagnant, 573K hot surrounding

- Calculated for representative single droplet
- Starting conditions
 - 32.5% by weight
 - diameter of 70µm
 - temperature of 293K
- Decomposition consumes
 1/3 of overall energy needed

Available Deposit Assessments (Selection)

Authors	Key equation	Comment
Brack et al. (2014)	$\frac{dn_r}{dt} = A_0 \cdot e^{\frac{-E_A}{RT}} \cdot V_R \cdot \prod_j c_j^{\gamma_j}, r \in \{II, III, \dots, XIV\}$	Liquid phase reaction for each potential paths of urea towards by-products
Becker et al. (2014)	-	Empirical regime map of spray impingement surface load vs. wall temperatur
Ebrahimian (2012)	$r_k^{reaction} = \sum_{i=1}^{Nreactions} v_{ki} A_i' \exp\left(-\frac{E_{a,i}}{RT}\right) \prod_{j=1}^{Nspectes} Cs_j^{v_{ji}} [\text{mol.cm}^{-2}.\text{s}]$	Solid phase reaction with active surface for each species; each potential reaction considered
Gan et al. (2016)	$\frac{\partial A_{s}}{\partial t} + \frac{\partial A_{s}u}{\partial x} = \frac{S_{m}Y_{u}}{W\varepsilon},$	Active reaction surface for each species; each potential reaction considered; see Ebrahimian above
Schiller et al. (2015)	$EER = \frac{\dot{m}_{exhaust} * c_{pair} * T_{exhaust}}{\dot{m}_{DEF} * c_{pwater} * (100 - 70) + \dot{m}_{DEF} * h_{fg_{water}}}$	Ratio of exhaust energy available and required energy for water evaporation
Smith et al. (2014)	-	Local deposit risk based on combination of injection rate, HNCO concentration, temperature etc.
Qian et al. (2017)	-	Only urea crystallization by phase diagram of uws considered
Zhang et al. (2017)	$F_D(T) = \sum_i y_i \cdot F_i(T)$	Empirical correlation for urea decomposition
Zheng (2016)	$DFP = \alpha \frac{film_height}{max (film_height)} + (1 - \alpha) \frac{max (heat_flux)}{heat_flux}$	Appraisal index based on local film thickness, heat flux and weighting factor

- Numerous methods available
- Detail level and effort covered
 - from simple indices
 - to reaction kinetics

 Topic is still work in progress indicated by ongoing activities

Reaction Scheme w/ Aggregation States

- Urea converted to HNCO and Biuret as intermediates
- Cyanuric acid identified as main component in solid by-products
- Deposit build-up rate more pronounced in temperature span of 200...225 °C

By-product reaction paths located in the vicinity of liquid interfaces / wall film.

Analysis of Wall Wetting Regimes, Kettmann (2017)

- Three regimes w/ pulsed spray
 - Dry Wall
 - → No liquid deposition
 - Temporary Wall Wetting
 - → Complete evaporation during one injection period
 - · Permanent Wall Wetting
 - → Accumulation of liquid
- Correlation of regime and wall temperature
- Deposit potential expected only in liquid wall film feed

Deposit Growth Impingement Overload and Temporal Evolution

Angled top view, gas velocity 20m/s

- Deposit growth correlates to impingement overload
- For moderate overload deposit
 located near the wall film rim
- For strong overload streamlets
 break through
- Over time growth appears initially planar, then layered and shifted upstream

30min

Spray Evaporation Impact of Droplet Size on Wall Impingement

- Mass hitting the wall calculated for single droplets
- Typically 30...80% impinged at wall in average
- Evaporation improved and deposit potential lowered w/ sizes below 50µm significantly
- Additional trade-offs determined by packaging and uniformity

Wall Film Evaporation Mass Flux for Typical Boundaries

Calculation neglecting water content

$$\frac{\dot{m}_{evap}}{A} = \frac{\alpha}{c_{p,g} \cdot Le^{2/3}} \cdot \ln(1 + B_{M}) \quad \text{with} \quad B_{M} = f(p_{sat,u})$$

- Evaporation depends mainly on dynamic of urea vapor pressure
- Velocities determined by layout of mixing section and driving profile
- Wall temperatures and gas velocities correspond to typical boundaries in application
- Evaporation mass flux spanned
 from 7·10⁻⁴ to 5·10⁻² kg/(m² s)

Mass flux

Current Heavy Duty Aftertreatment-Systems in Comparison Surface Area of the Mixing Section

- Overall available surface for preparation estimated geometrically as indicator
- Mixing sections in today's
 aftertreatment applications
 equipped w/ surface around
 0.37m² in average
- Trend for future applications
 expected to include increased
 surface up to 0.5m² in average

Summary

- The system's capability for preparation is a product of
 - thermal conditions due to
 exhaust gas temperatures / flow field,

 spray evaporation w/o wall contact due to droplet sizes and

 balances between wall film evaporation and impingement load / large surface area.

- Aggregate trade-offs between uniformity, backpressure and overall cost need to be fulfilled
- Injection rates corresponding to raw-NO_x emission level expected to go up
- For better preparation the adjustments between the shown factors demanded

Thank You for the Attention!

Back Up

Wall Film Evaporation Main Equations

$$\frac{\dot{m}_{evap}}{A} = \beta \cdot \rho_g \cdot \ln (1 + B_M)$$

$$p_{\text{sat,u}} = e^{-\frac{24238.62}{T} + 59.69}$$

$$\frac{\dot{m}_{evap}}{A} = \frac{\alpha}{c_{p,g} \cdot Le^{2/3}} \cdot \ln(1 + B_{M})$$