

AVL List GmbH (Headquarters)

REAL DRIVING EMISSIONS (RDE) Was steckt wirklich dahinter? AVL M.O.V.E In-Vehicle Testsystem

Schöggl, Marco

REAL DRIVING EMISSIONS (RDE) A REAL CHALLENGE FOR ON ROAD TESTING

MOUNTAIN

RANDOMNESS

Driving style has a strong impact on the

equipment – shocks and vibrations.

EXTREME CONDITIONS

AMBIENT TEMPERATURE

Changing ambient temperatures can strongly impact the quality of RDE test data.

AMBIENT PRESSURE

Changing ambient pressure is the key decision criterion for the selection of PEMS analyzers..

Impact to Emissions

Drive Cycles:

Vehicles must be clean in a much larger area of the engine map:

- NEDC \rightarrow WLTC
- Real Driving Emissions

Example:

Drive Style:

Drive style has a large impact (by factors) on emission:

- aggressive
- moderate

Example:

Altitude:

Impact of altitude:

- physical
- calibration, like when EGR is switched off

Wind:

Impact of wind is:

- crosswind
- traffic turbulences
- drafting (Windschatten)

Example:

Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 3

RDE IMPLEMENTATION WORLDWIDE

New characteristic of legislative development

- PN Limit, Cold start, Hybrids
- Feb. 2016 RDE Package 2
- NOx Limit, Test Boundary Conditions
- 2015 RDE Package 1
- Decision on PEMS, Monitoring from 2016

Euro Time line – Light Duty PC

EU – Update draft RDE Package 4

New Appendix 6 – Calculation of the final RDE emissions results – ICE and NOVC-HEV

For valid trips, the final RDE results are calculated as follows (k = t for total trip, u for urban part):

 $M_{RDE,k} = m_{RDE,k} * RF_k$

Index (k) refers to the category (t=total, u=urban, 1-2=first two phases of the WLTP cycle) $m_{RDE k}$... pollutant emissions during RDE trip in [mg/km] or [#/km] $RF_{\nu}=1$ ("raw emissions") 1.20 Linear interpolation *RF_k* RDE Evaluation Factor *M_{RDE k}*..... Final RDE result [mg/km] or [#/km] 1.00 RDE Evaluation Factor *RF*_k $RF_{k}=1/r_{k}$ 0.80 Value of RF_k is dependent on ratio of CO₂ emissions [g/km] during RDE trip to CO₂ emissions during 0.60 $r_k = \frac{M_{CO_2, RDE, k}}{M_{CO_2, WLTP, k}}$ **WLTP** 0.40 0.20 For type approvals before 01.01.2020: $RF_{11} = 1.20$ and $RF_{12} = 1.25$ 0.00 RF_{L2} RF_{L1} For type approvals from 01.01.2020: RDE / WLTP CO2 Ratio Tk $RF_{L1} = 1.30$ and $RF_{L2} = 1.50$ Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 9

New Appendix 6 – Calculation of the final RDE emissions results – OVC-HEV

For valid trips, the final RDE results are calculated as follows (k = t for total trip, u for urban part):

 $M_{RDE,k} = m_{RDE,k} * RF_k$

 $d_{ICE,k}$... Distance driven [km] with ICE on for OVC-HEV during RDE $d_{EV,k}$... Distance driven [km] with ICE off for OVC-HEV during RDE

For type approvals before 01.01.2020: $RF_{L1} = 1.20$ and $RF_{L2} = 1.25$ For type approvals from 01.01.2020: $RF_{L1} = 1.30$ and $RF_{L2} = 1.50$

Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 10

SIMULATION

AVL Solutions

(A comprehensive approach to RDE)

AVL M.O.V.E

The Industry Standard to Measure Real Driving Emissions (RDE)

COMPLETE RDE TEST SYSTEM

AVL M.O.V.E iS System

- GAS PEMS is
- PN PEMS is
- EFM iS
- System Control
- Concerto M.O.V.E Postprocessing

... done more than 30.000 RDE tests @ 100+ customers!

AVL M.O.V.E iS

The Industry Standard to Measure Real Driving Emissions (RDE)

AVL M.O.V.E – RDE TESTING SYSTEM

RDE Development

AVL 🖗 M.O.V.E – an In-Vehicle test platform which is aligned with the In-Lab test platform

Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 15

RDE TEST REQUIREMENTS

Application

Real Driving Emissions (2016/427 1st package, 2016/646 2nd package, 2017/1151 3rd package, 4th package)

Standard

Light duty vehicle on Real Driving Emission testing:

- Portable F PN, Exhapped a randomness of real driving
- Implementation: EU 2017, Korea 2018, China 2019, India 2020, Japan 2022

Limits:

- CF NOx: Iow emissions under all conditions
- 2 calculation options, Entrone (site) of CLEAR (10 Graz)

RDE Test requirements:

- 30min cor
- RDE Drive realistic testing will be tough to meet requirements
- 34% Urban (<60km/h), 33% Rural (60 ... 90km/h), 33% Motorway (>90km/h)
- max. Speed 145km/h (can be extended to 160km/h on test track)
- positive altitude gain < 1200m/100km
- OVC Hybrid test in Charge–Sustaining mode
- Periodical Regeneration w/o Regeneration use ki-factors

Ambient conditions:

- 0°C to 30°
- up to 700

wide range of environmental conditions

RDE TEST REQUIREMENTS

Application

Real Driving Emissions (2016/427 1st package, 2016/646 2nd package, 2017/1151 3rd package, 4th package)

Light duty vehicle on Real Driving Emission testing:

- Portable F PN, Exhapped a randomness of real driving
- Implementation: EU 2017, Korea 2018, China 2019, India 2020, Japan 2022

Limits:

- CF NOx: Iow emissions under all conditions
- · 2 calculation options, ETIROAD (JRC) of CLEAR (TO GIAZ,

RDE Test requirements:

- 30min cor
- RDE Drive realistic testing will be tough to meet requirements
- 34% Urban (<60km/h), 33% Rural (60 ... 90km/h), 33% Motorway (>90km/h)
- max. Speed 145km/h (can be extended to 160km/h on test track)
- positive altitude gain < 1200m/100km
- OVC Hybrid test in Charge–Sustaining mode
- Periodical Regeneration w/o Regeneration use ki-factors

Ambient conditions:

- 0°C to 30°
- up to 700

wide range of environmental conditions

RDE Chassis Dyno Validation Test Test setup and RDE requirements

Test setup:

RDE correlation limits:

(30) in Appendix 3, in point 3.3., Table 1 is replaced by the following: <i>"Table 1</i>				
Permissible tolerances				
Parameter [Unit]	Permissible absolute tolerance			
Distance [km] ⁽¹⁾	250 m of the laboratory reference			
THC ⁽²⁾ [mg/km]	15 mg/km or 15% of the laboratory reference, whichever is larger			
CH4 ⁽²⁾ [mg/km]	15 mg/km or 15% of the laboratory reference, whichever is larger			
NMHC ⁽²⁾ [mg/km]	20 mg/km or 20% of the laboratory reference, whichever is larger			
PN ⁽²⁾ [#/km]	$1 \cdot 10^{11}$ p/km or 50% of the laboratory reference ¹ whichever is larger			
CO ⁽²⁾ [mg/km]	150 mg/km or 15% of the laboratory reference, whichever is larger			
CO ₂ [g/km]	10 g/km or 10% of the laboratory reference, whichever is larger			
NO _x ⁽²⁾ [mg/km]	15 mg/km or 15% of the laboratory reference, whichever is larger			

⁽¹⁾ only applicable if vehicle speed is determined by the ECU; to meet the permissible tolerance it is permitted to adjust the ECU vehicle speed measurements based on the outcome of the validation test

(2) parameter only mandatory if measurement required by point 2.1 of this Annex.";

Source: Commission Regulation (EU)

AVL M.O.V.E iS System Validation Achieves very good agreement to CVS

PEMS Sy Vehicle	stem:	AVL M.O.V.E GA AUDI A4 1.8I TF	AS iS & PN iS SI				Testbed: Test Cycle:	AVL CD 401 WLTC 4 Phase
Po	llutant	CVS BAG	PEMS	absolute difference (PEMS-CVS)	relative difference (PEMS-CVS)	Status	RDE correlation limits	50% Limits
Distance	km	23,4	23,416	0,016	0,9993			
CO2	g/km	149,9	152,4	2,5	1,7%	Passed	+/- 10g/km or 10%*	+/- 5g/km or 5%*
CO	mg/km	192,4	158,9	-33,5	-17,4%	Passed	+/- 150mg/km or 15%*	+/- 75mg/km or 7.5%*
NOx	mg/km	40,7	38,6	-2,1	-5,2%	Passed	+/- 15mg/km or 15%*	+/- 7.5mg/km or 7.5%*
PN	#/km	8,56E+11	8,55E+11	-1,62E+09	-0,2%	Passed	+/- 1E+11#/km or 50%*	+/- 1E+11#/km or 25%*
							* whichever is greater; perce	nt of laboratory reference

RDE limits		Passed	
50% RDE limits		Passed	

RDE ONLINE GUIDANCE AVL MOVE SYSTEM CONTROL

REMOTE CONNECTION

INCREASE VALID RDE TEST DRIVE >90%

RDE PEMS Requirements will be extended Pre vs. Post Drift Verification not enough

Pollutant	Absolute Zero response drift	Absolute Span response drift (1)
CO ₂	≤2000 ppm per test	≤2% of reading or ≤2000 ppm per test, whichever is larger
СО	≤75 ppm per test	\leq 2% of reading or \leq 75 ppm per test, whichever is larger
NO _X	≤5 ppm per test	${\leq}2\%$ of reading or ${\leq}5$ ppm per test, whichever is larger
CH4	$\leq 10 \text{ ppmC}_1 \text{ per test}$	\leq 2% of reading or \leq 10 ppmC ₁ per test, whichever is larger
THC	≤10 ppmC ₁ per test	$\leq 2\%$ of reading or ≤ 10 ppmC ₁ per test, whichever is larger

RDE Testing under high Altitude Performance of GAS & PN PEMS iS (3.000m)

Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 22

RDE Testing – M.O.V.E GAS & PN PEMS iS More in next RDE Presentation...

AVL M.O.V.E PN PEMS iS

- PMP-reference in parallel
- PN PEMS installed on shaker
- \rightarrow No quantifiable effect of vibrations up to 3g was observed.

Public

Vibration Tests of the AVL M.O.V.E PN PEMS iS

AVL M.O.V.E PN PEMS iS Vibration Tests

- 1. Measurement of the accelerations on a vehicle during a RDE test run on the road
- 2. Derived profile for the shaker with a representative acceleration energy density the device experience during the RDE run
- 3. Vibration tests on a shaker
 - APG as soot source

nent of the accelerations

AVL M.O.V.E PN PEMS iS Vibration Tests

- Measurement of the accelerations on a vehicle during a RDE test run on the road
- Derived profile for the shaker with a representative acceleration energy density the device experience during the RDE run
- 3. Vibration tests on a shaker
 - APG as soot source
 - PMP-reference in parallel
 - PN PEMS installed on shaker
- → No quantifiable effect of vibrations up to 3g was observed.

Measurement data - testbed

Measurement campaign at AVL Powertrain Engineering

- PN PEMS iS compared to an APC at tailpipe
- 6 runs with one vehicle (black) and 7 tests with different GDI vehicles (orange, cold starts)
- In total 11 WLTC hot
- Results show an excellent agreement well below 20%

AVL M.O.V.E EXHAUST FLOW METER DESIGNED FOR...

... fulfilling all requirements of the actual legislation (EU ISC, EU RDE, US EPA HDIUT)

- Sufficient lengths of the main and extension tubes
- Linearity, accuracy, ... acc. legislative requirements
- ... accurate measurements under dynamic exhaust flow conditions
 - High-speed evaluation of the Pressure Transducers (5kHz)
- ... quick and easy integration into AVL M.O.V.E, other automation and data acquisition systems
 - CAN out (1khz), analog out, Ethernet interface
- ... safe installation
 - Consideration of safety aspects e. g. heat insulation blanket

AVL M.O.V.E EXHAUST FLOW METER

Exhaust flow meter - Pitot Challenge Small NA gasoline engines – Pulsations at low flow

- Highest Measurement Accuracy even in low flows
- As pulsations are accurately captured at a data rate of 5 kHz!

Further Applications AVL M.O.V.E In-Vehicle Testing

Emission Measurement

EU-4: 2016 based on UN-ECE-Regulation 40/47 and GTR-2

Introduction of PM limits for CI and GDI engines, only

EU-5: 2020 based on UN-ECE GTR-2

open discussion (Effect study) in-use conformity, off-cycle emissions and PN

USA: EPA Motorcycle Standard [g/km]

no change since 2010

USA: CARB Motorcycle Standard [g/km]

no change since 2008

Asia (India): still Leading the MC emission regulations

Start of discussion about RDE

Is "Real Driving Emission" Measurement on Motorcycles possible?

Case Study with TU Graz Setup Motorcycle with actual RDE equipment

AVL M.O.V.E iS CO2 Testing – Real Fuel Consumption

- Fast connection to your on board fuel system
- Provides online result by I/km (also via MAP data)
- Full integration with AVLM.O.V.E and thus PEMS
 - testing
 - Highest accuracy for real driving fuel consumption at low flows

AVL M.O.V.E iS RDE DEVELOPMENT EXTENSION

RDE Development

AVL 🖗 M.O.V.E – an In-Vehicle test platform which is aligned with the In-Lab test platform

Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 41

AVL M.O.V.E - Energy Efficiency Evaluation CO2 & E-Power Measurement Extension

- Easy add-on of hybrid key figures into System Control (real fuel consumption, battery state of charge, Recuperated energy, charging modes, HCU information)
- High speed power measurement for exact battery aging effects determination
 - Extended Reporting of total energy efficiency for better evaluation of vehicle strategy

AVL M.O.V.E HEAVY DUTY TESTING

Heavy duty in-service conformity with PEMS

Heavy Duty – PEMS Testing

AVL M.O.V.E GAS & PM PEMS

In-Use Testing GAS PEMS PM PEMS CAN J1939 FM PEMS COCerto PEMS SYSTEM CONTROL COCerto PEMS SYSTEM CONTROL COCerto PEMS Concerto PEMS

In-Service Emissions conformity (compliance):

- "Real Life" Test on the street with PEMS (Portable Emission Measurement System). First in-service test should be conducted at the time of type approval testing
 - CO2, CO, NOx, THC, PM (PN in discussion for EU)
 - Exhaust flow rate, Speed, n, M and GPS data.

PEMS Test

 EU testing is conducted over a mix of urban (0-50 km/h), rural (50-75 km/h) and motorway (> 75 km/h) conditions, with exact percentages of these conditions depending on vehicle category.

Ambient conditions

• Temperature and Altitude as defines for off cycle emission requirements

Limits and Result calculation

- Limits are based on the laboratory limits multiplied by 1.5
- EU Result calculation by "Work based window"
- US Result calculation by NTE-Events (during ≥30seconds operation with high enough engine torque, speed and power

HDV – In Service Compliance Testing PN Introduction

European Commission

PEMS PN procedure with conformity factors

- The assessment of JRC in 2015 has proved a technical feasibility of the PEMS equipment to measure particulate number
- PEMS PN procedure will be introduced together with the 10% power threshold requirement – 1.09.2018 for new types, one year later for all new vehicles
- On-going tests on different vehicles
- Proposal to be prepared still in 2017

2015: PM will be replaced by PN

2017: PN for HDV will be introduced by 2019

NON-ROAD MOBILE MACHINERY (NRMM) IN-USE TESTING

Non-road in-service monitoring/conformity with PEMS

AVL M.O.V.E NRMM REFERNCE OFF-ROAD TESTING - TRACTOR FENDT

Setup consisting of

PM PEMS • System Control • Generator • E-Box Gas PEMS • Sensors EFM Battery pack—Ruge *

HDIUT EXAMPLES – OFF ROAD

HDIUT EXAMPLES – OFF ROAD – RESULT DATA

HOW TO GET A VALID TEST? TRIP REQUIREMENTS...

KEY IS POST PROCESSING!!!

AVL CONCERTO 5TM - M.O.V.E DATA TOOLBOX AVL LEGISLATIVE POST PROCESSING

PBMS Current Case: d:VAVL\ConcertoW/lorkEnvironments\PBMS_v4_3_13\PBMS\PM_PBMS.pms

2018 | 06 April 2018 | 55

6000

5000

4008

Time (s)

AVL CONCERTO 5TM - M.O.V.E DATA TOOLBOX LEGISLATIVE POST PROCESSING

AVL CONCERTO 5[™] - M.O.V.E DATA TOOLBOX Example LDV - RDE 3 Results

RDE Development

Schöggl, Marco | AVL Emission TechDay 2018 | 06 April 2018 | 58

RDE Type Approval on the Road R&D in the Lab

RDE Validation Impact for Testing Environments

Same Results

Same Models

Same Tests

Same Tools

Same Data Storage

Same Analysis

Thank You

RDE compliance is a must

RDE legislation is implemented on global scale

RDE development focusing on boundary conditions asks for new development approach

Additional aspects will follow like Fuel Consumption & Energy Efficiency