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Introduction
Market Drivers / Customer Requirements

= Accident free driving
active safety functions e.g. emergency braking, lane keeping
assistant

= Driver relief and comfort functions
e.g. parking assistant, adaptive cruise control

= Connectivity
e.g. smart phone interaction, real time traffic information, V2X,
cloud computing

Fuel/energy efficiency Key importance
- e.g. EV driving range, Fuel saving by predictive
‘ functions and platooning

Operating cost: Driver substitution as TCO argument
at mainly transport & shared mobility business
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Vehicles & traffic lights will communicate in future (starting now):
Direct communication (or via centralized traffic management)..
Vehicle follow calculated (here generated on-board) velocity trajectory.

—— Recommen ded Speed profile

—— Vehicle velocity

Time

Velocity

AVL's concept development of 1st generation Traffic Light Assistant ca 2012.

TLA relies on V2I communication, specifically from I2V.

Centralized traffic
management
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First Traffic Light Assistant (TLA) systems starting to be introduced e.g.:

« Continental performing testing with ‘Smart Traffic Light Assist (TLA)". Field trials in Las Vegas &
Regensburg. Shows very significant energy savings (9.5% average).

« Audi announces first vehicle to infrastructure (V2I) service in US with Traffic Light info. system.

System available in 2017 on Q7, A4 & A4 Allroad.

Powertrain Control by Connectivity — Chances, Architectures, Solutions

= -

)
S N A7

e O 9
' A8 0-:—::}—-—3—
" JP-'"—‘

:
v
\ _::.‘ ! | i i

i". »‘-

Public

Press release

Audi announces the first vehicle to infrastructure (V2I) service - the
new Traffic light information system

« New Traffic light information system communicates with municipal traffic signals to inform the driver when traffic lights turn from red to green.
ic Li i i i il tructure

Press Release: AudiUSA

t 88.1

Traffic signs

Vdi Wissensforum Innovative antriebe | 23rd- 24th November 2016
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Traffic Light Assistant
Traffic Light Assistant Visualized (1/2)

= Use of V2I information to approach multiple Traffic Light (TL)
scenario:

« Goal: find most energy efficient way.

= Model Predictive Control (MPC) formulation:
 Receding horizon approach.
« Real-time optimization by cost fcn minimization & constraints.

j—’rx = F(t.x,u), x(0) =xy,
J(u) = [L(t,x,%,u) — extr.

Digital Map :

c mmcil' tion GPS Navigation Eil_lect.ronlc

| ommunicatio | System | orizon
\o fONS f NS A

Optimal speed profile

40km/h

System

e Recommended cruising speed
Public activation |
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Traffic Light Assistant
Traffic Light Assistant Visualized (2/2)

Ego Vehicle
vehicle ahead

Set of constraints imposed by Traffic Lights & traffic

Distance C
A Optimization problem:
TL3 e,
Vehicle ahea min ) (x(0),u(r))
TL2 ;
1} ST g(x’ u, t) S 0
u(r) €U, x(r) €X, T=t,..,t+N,
TLA1 x(t+1) =Ax(1) +Bu(r), t=t¢t..,t+N,—1
e — S x: state variables, u: control variables, T: time,
N, :prediction horizon
/ —_—

Min. of Energy Consumption
Constraints imposed by TL
Constraints imposed by traffic
Powertrain specific constraints

Constraints imposed by other vehicles Time

- Constraints imposed by TLs
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Traffic Light Assistant
Results From Testing of AVL's 1st Generation TLA
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Traffic Light Assistant
Seamless Development of OpEneR Functions 2013

Reuse of office simulation
environment for AVL InMotion
testbed
s

§> Office>> Lab >Testbe>> Road>
InMotion

dSpace Control Desk m

Signal Exchange
(Dyno Speed etc.)
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Interactive Workshop (1/2)

Traffic Light Assistants (TLA) require digital communication of traffic light signal phase & timing (SPAT).

Alternative (complementary or competitive) V2X (Vehicle-to-Anything) technologies are emerging, either
based on cellular/mobile data communication, or via Dedicated Short Range Communication (DSRCQC).

Which types of V2X do you think will be dominant in the short and long-term future? Short-
term cellular/mobile data or DSRC? Long-term both? In UK? In Europe? Worldwide?
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Energy-Efficient CACC - Problem Overview
What is Cooperative Adaptive Cruise Control?

Cruise Control (CC): Longitudinal speed control with set speed defined by human driver.

Adaptive Cruise Control (ACC): Adapts speed based on distance to & speed of preceding vehicle, e.g.

measured using on-board sensors such as RADAR or Camera.

Cooperative Adaptive Cruise Control (CACC): ACC extension supported by communication with

surrounding traffic & infrastructure, possibly also other data sources e.g. cyclists, pedestrians.

Cruise Control Adaptive Cruise Control  Cooperative Adaptive Cruise Control
(cC) (ACC) (CACC)

Image source: edmunds.com Image source: media.volvocars.com Image source: researchgate.net
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Energy-Efficient CACC - Problem Overview
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Cruise Control Adaptive Cruise Control Cooperative Adaptive Cruise Control
(CC) (ACC) (CACC)
s R §
Ego vehicle Ego vehicle Preceding Ego vehicle Preceding Infrastructure

vehicle(s) vehicle(s)
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Energy-Efficient CACC - Problem Overview
Background

v Includes time-dependent
Route contains altitude, LN constraints such as traffic

Vehicle following

known path curvature, traffic lights, 4 light signal phases
I Traffic Light 3 =
Emuu
E?su
Traffic Light 2
Esuu
o 2 ‘:"'. L
s o Traffic Light 1 j—— — —_—
500 e i
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e
& Lo
P o B
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Infrastructure-to-vehicle
V2V /I12V Vehicle-to-Vehicle (12v) ..
(V2V) n n Holistic
Radar

approach
needed!

Traffic light Traffic light
1 2

A4

Following vehicle Ego vehicle Preceding vehicles
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Energy-Efficient CACC - Problem Overview
EECACC Overview

= Holistic & full range predictive speed control strategy (CACC) including ego-vehicle & its static

& dynamic powertrain characteristics, uses V2X derived RT traffic, infrastructure & route data.
= Optimizes in real-time trade-off between energy efficiency, driver comfort & safety.

V2X (Vehicle to Anything) Vehicle-to-Vehicle (V2V) Vehicle-to-Infrastructure (V2I)

On-Board Sensors
- - -
Py (g radar)

Ego Vehicle Preceding Vehicle Traffic Light

Energy savings up to 30%

Simtic fuel consumption map for zero degree incline

v

Velocity v

Acceleration a

Road
Inclination 0

Fuel consumption [9's)

Gear ¢

Energy Consumption Map computed
———————————————————— ! Online in real-time Optimization

Powertrain M I
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Energy-Efficient CACC - MPC
Introduction to Model Predictive Control (1/2)

a
l Plant’

* i.e. vehicle & driving
environment

Uopt = [u(O),uM)]T ** \ehicle states, traffic

Optimal sequence of control light information, etc.

inputs over prediction horizon Hy
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Energy-Efficient CACC - MPC
Introduction to Model Predictive Control (2/2)

= Predicts plant states based upon optimal _ ( ]
control signal & system equations. L fald  Prediction
preal Module J
= Optimization problem solution. Generation
f optimal control signal. Only first element of e maw
~ Op_ ] g ) Y Optimization "
that signal is forwarded to the plant. The rest g Module i

is used in Prediction Module.

= MPC optimizes future plant control
trajectory by minimizing a prescribed cost ¥
function subject to constraints.

Minimize
J(u,x,y,..)
Subject to
f(u,x,y,..) <0
guxy, ..)=0
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Energy-Efficient CACC - MPC
Hybrid Model Predictive Control

= Hybrid* Model Predictive Control (MPC) dynamically incorporates descriptions of upcoming traffic
& road conditions as constraints in receding horizon.

= Non-linear constraints like energy consumption, gear shifts, full load, & road attributes (e.g.
gradient, curvature) modelled.

= eHorizon & V2X used for better predictions of preceding traffic & infrastructure, including traffic
lights, variable speed limits, delivery & bus stops.

PWA approximation of static fuel consumption

'Aulmum acceleration 9
h

Fuel consumption [g/s]

62

6

g

FIO)

»
>

p'(O) p'(l) p'(Z) p'(3) p'(‘l) Hy D

Acceleration [mVs?] Speed [ms) Speed [mvs)
dSEG
Energy consumption map Acceleration limits Road segmentation for topology,
including gear shifting including road gradient speed limits, etc.
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Energy-Efficient CACC - MPC
Alternative Hybrid MPC Cost Functions

Minimize
Jw%y,..) =) Cost function
Subject to
wxy,.)<o0 _
fwxy,.) = q Constraints
guxy, ..)=0
QP Approximation of Minimum FCM (all gears) PWA approximation of static fuel consumption

Quadratic acceleration cost

OR

Fuel consumption [g/s]
w N — o - N w
Fuel consumption [g/s]

20

10

10
) 5 Acceleration [m/s?] S 5 0 °

Acceleration [m/s?] ) 0 Speed [m/s] Speed [m/s] Acceleration [m/s’] 1o Speed [m/s]

Acceleration Quadratic projection of Fuel Piecewise affine FCM
(QP) Consumption Map (QP) (Hybrid)
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Energy-Efficient CACC - MPC

Hybrid MPC Constraints

Discontinuities
e.g. gearshifting

—

v

»
»

Propositional logic with binary
variables

Public

Min. of convex function
A Or
Max. of concave function
e.g. full load curve

»

|

Multiple affine constraints
(no binary variables)

min x
s.tx =aq+ byx
X =a, + byx

g©

Non-convex/concave functions
e.g. speed limits on route

Max velocity

-(4)
Vmax

-(3)

p(o) p'(l) p'(Z) p'(?’) p(‘l)

dSEG
Piecewise Affine (PWA)

approximation of
nonlinear constraints
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Energy-Efficient CACC — MPC
Traffic Light Constraints

Select Earliest Define Distance

Reachable Green Boundaries Over
Phases Prediction Horizon

A
TL3 —_— — TL3
Q Q
: :
S TL2 @ TL2
et -t
2 @
=) (=)
TL 1 _— LA
Time Time
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Energy-Efficient CACC — MPC
Traffic Constraints (1/5)

Prediction Model

AR Min Headway Time/ DTstance u
(Autoregressive) V2X-Based Prediction \\\ " Max headway time/distance
(Vpr: apr)
. Ego vehicle Preceding vehicle pg:L
pr
3s 17 s Hp %
Py
TL 2 o
TL 1

Predicted positions of preceding vehicle,
including minimum headway distances/times
(‘hard” maximum positions)

N
v

Hrp t
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Energy-Efficient CACC — MPC
Traffic Constraints (2/5)

Prediction Model

AR Min Headway Time/ DTstance H
(Autoregressive) V2X-Based Prediction \\\ " Max headway time/distance
(Vpr: apr)
. Ego vehicle Preceding vehicle p%"L
pr
3s 17 s Hp %
Py
TL 2 o
TL 1

-~ A tunable distance from the
/ preceding vehicle is allowed
(‘soft” minimum positions)

dP" =40m |7

Hrp t
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Energy-Efficient CACC — MPC
Traffic Constraints (3/5)

Prediction Model

AR Min Headway Time/ DTstance u
(Autoregressive) V2X-Based Prediction m\\\ " Max headway time/distance
(Vpr: apr)
= Ego vehicle Preceding vehicle pg:L
pr
3s 17 s HT %
Py

TL 2 § —

TL

TL 1 \

The start of traffic light green
phases should be targeted
(‘soft” minimum positions)

Hrp t
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Energy-Efficient CACC — MPC
Traffic Constraints (4/5)

Prediction Model

AR Min Headway Time/DTstance H
. T AN <+ >
(Au(toregress)lve) V2X-Based Prediction \\\ Max headway time/distance
Vi, A
pr’ 9pr
. Ego vehicle Preceding vehicle p%"L
3s 17s Hy pr
P,
pr i
Pr R
TL 2 — —
,”,. ____
,/
P
TL 1 T

PMIN \ The effective soft minimum positions are
obtained by taking the minimum of all
individual soft minimum positions

Public

Hrp t
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Energy-Efficient CACC — MPC
Traffic Constraints (5/5)

Prediction Model

AR Min Headway Time/Distance
(Vprr apr)

Preceding vehicle p%:L

3s 17 s H; pP’
p,

Min/Max Positions
over Prediction
Horizon

TL 1

MPC minimized trade-off between energy
v = 40m 4 consumption & driveability (jerk) within this

accepted area of positions

Hr t
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Energy-Efficient CACC - MPC

Overview of ECACC Control Architecture

Public

Controller

Infrastructure-To-Vehicle (I12V)

Y

Traffic Light
Positions and Phases

Legal Speed Limits

Update Environment Model [ — — —
Road Curvature Road Inclination
v Preceding Vehicle's Longitudinal Motion
Predict Preceding Vehicle's e« — — —
Future Trajectory Position Speed Acceleration
Y
Select Green Wave .
(Gap Selector) < } Ego Vehicle
v | | Ego Vehicle's Longitudinal Motion
| ]
Find Optimal Acceleration | ]
(MPC) €= 1—= iti -
I Position Speed Acceleration
|
v |
Regulate Acceleration -« —1
(Pl Controller) [ ______ —> Accelerator and Brake
Pedal Positions

The MPC'’s environmental model
is updated using data from both
map & V2I

Behavior of preceding traffic is
predicted using short-term
predictions, possibly with V2V,
also considering infrastructure

MPC finds acceleration which
minimizes tunable cost between
energy consumption, travel time,

& comfort/driveability
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Energy-Efficient CACC - Simulation

Graz Route Simulation (Overview)

EECACC
Vehicle & Powertrain
Model

e Road Model

e Surrounding Traffic

MATLAB Model

SIMULINK

Vehicle & Powertrain
Plant

Traffic Lights

Road Description
Surrounding Traffic

A% o R 2 Ry
G &
L+ B67a %, /% Bl o &k 5
oo 2 p % e S e,
2 s \ Skl % T / Das, E
N 5 \ B2 7 % 5
8 \¢ sk 250057 C
LR \ e e T e FranzZens: o, i
) ° S —GeldbiolsEia Universitat he
/\\\ Geldodglatz 2 N arag \
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\ . &
Platzder’ 1\,

\ %
Versohnung R
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NK
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HilmteichstralRe 1 — Griesplatz 1

Typical energy savings of between 5% & 30% depending on scenario
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Distance (m)

Energy-Efficient CACC - Simulation Results

Graz Route Simulation without Traffic

3000 L S 7
2500 = ; S R SR : __
2000 _ /', — =
— = — — E
1500_ — . SR \-g-
I — — — I %]
1000 - s — —
500 frm— _—— . - o __ -
= = Human Driver MPC = = =Human Driver MPC
0O 50 100 150 2(‘)0 2‘50 3(‘)0 350 400 450 5‘0 1 60 1 éo 260 2‘50 360 3‘50 460 4‘50
Time (s) Time (s)
Energy savings: 25%* without traffic Adjustable travel
with no increase in travel time time & driveability
bl * like most predictive functions, the benefits depend on the specific use case.
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Distance (m)

Energy-Efficient CACC - Simulation Results

Graz Route Simulation with Traffic

60
3000 - R A
2500 = —_
2000 - =
= - = - £
1500 :
— - Z
1000 S
500 __ __ - - _— —
= = =Human Driver MPC Preceding Vehicle
00 5‘0 100 1 éO 200 ?5;) 3(‘)0 3é0 400 450 - 00
Time (s
Energy savings: 16%™ with traffic
with no increase in travel time
bl * like most predictive functions, the benefits depend on the specific use case.

| | | | | | | |
100 150 200 250 300 350 400 450
Time(s)

Adjustable travel

time & driveability
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Energy-Efficient CACC - Testbed Results
FFG TASTE Project

~TASTE #..

“Traffic Assistant Simulation and Testing Environment".
10.2015 - 06.2017

= Virtual test environment for ADAS, including real communication units.
= RT interaction / communication of traffic control infrastructure & cars.
» Specific testbed setting for specialized application.

» Testbed & Road testing with real vehicle & V2X units.

21

T

o 2 ﬂa—j

ATLa TYriz

Public
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Energy-Efficient CACC - Testbed Results
FFG TASTE Powertrain Testbed Setup (2/2)

Public

TRAFFIC ENVIRONMENT

Traffic Flow
Simulation

INFRASTRUCTURE

Position

GNSS v2X

SIEMENS

VEHICLE PARTS

Tires

SIM.
ERS

VIRTUAL DRIVER

MODEL.CONNECT

Dyno Speed Request

= Seamless &
concurrent
development approach.

l Torque Feedba

Throttle

= Requirements, Control
Functions & Test Cases
first developed in
pure office co-
simulation (not
shown).

SENSORS
STIMULATION

= Later development
moves to real-time

Powertrain Testbed,
with reuse of the Test
Cases, & remaining
system parts that must

still be simulated.
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Energy-Efficient CACC - Testbed Results
EECACC Test Results from Powertrain Testbed

Road with low traffic, and average traffic speed, real V2X disabled.

EECACC controlled test case achieves a lower fuel consumption by the end of the maneuver (measured
real 25% diesel fuel consumption savings).

Both Reference and EECACC are able to cross the first traffic light under green phase, whereas for the
second traffic light, the EECACC controlled vehicle performs a smoother deceleration.

When approaching the last traffic light, EECACC controller slightly reduces its travel speed and is able to
effectively avoid the stop at the red traffic light.

Comparison Ref7 TLA10 (Low Traffic) 1800 Comparison Ref7 TLATO (Low Traffic)

1600+

1400~

1200+

-
o
=]
o

800

Distance [m]

600

400

= Time [sec] 200\,

I ; A i | |
100 150 200 0 50 100 150 200
Time [sec]
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Interactive Workshop (2/2)

If we have comprehensive knowledge about the future driving environment, significant energy
consumption benefits can be achieved with basically the same vehicle & powertrain hardware.

When will these functions reach the markets? Some limited functions are already available in
premium passenger cars & commercial vehicles. When will they become more mainstream?
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» |[ncreasing interest in V2X communications to intelligently connect conventional & automated vehicles.
= VV2X supported ADAS such as simple Traffic Light Assistants, now starting to be introduced in market.
= Efficiency, safety & convenience all benefit from optimized vehicle speed profiles

= AVL'’s Energy-Efficient Cooperative Adaptive Cruise Control (EECACC) reduces energy consumption by
up to 30%* in simulated city scenario, 25% on testbed.

= EECACC considers the static layout, sizing & efficiency of powertrain, as well as the dynamic state (e.g.
SoC, temperature) of powertrain, traffic ahead & traffic light signal, phasing & timing information.

= Benefits of EECACC extended to other powertrain functions e.g. hybrid powertrain mode selection.
= Seamless approach (office to testbed) facilitates dvpt. & validation of connected & predictive functions.

_ * like most predictive functions, the benefits depend on the specific use case. o _ _
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