

AVL List GmbH

Virtual approach to ADAS/AD safety testing and validation

Advanced Simulation Technologies

J. Balic, F. Koenigsson

Confidential

Vehicle Validation Cascade

Simulation

Scale Testing of Variants (Vehicle Configurations and Scenarios)

G0→ G0→		C0→ C0→
a al	a-al	
C3→ C3→	©3→ ©3→	63→ 63→
	a al	
	C3→ C3→	C3→ C3→
	a-al	
	C3→ C3→	C3→ C3→
	a-al	
C0→ C0→	C3→ C3→	C3→ C3→
a-as		a al

Virtual TESTING

Integrate, Analyze and Improve

+ specific test cases which cannot be done in simulation

Finalize and Confirm

+ specific test cases which cannot be done in simulation and/or Virtual Testing

Confidential for PDiM Sweden 2019

ADAS/AD MiL Integration Platform

AVL Framework:

- Ready-to-use MiL platform for rapid prototyping
- Accurate and fast vehicle models
- Integration of sensors and control units
- Large scale DOE optimization
- Scenario based validation in the cloud

Use cases:

- Lane keeping/changing assistant
- Predictive and adaptive cruise control
- Platooning
- Parking assist
- Traffic jam assist
- Active Safety etc.

Example: "Safety Tool Chain"

AVL Demonstrator Virtual Testing - Highway Pilot

Co-simulation of AVL VSM, VTD Vires and AVL Drive for Highway Pilot Application

Critical Scenarios Testing for ADAS USE CASE: Cut In – Cut Out

Sensor Model and Hardware Integration

Open Simulation Interface (OSI) for sensor model integration

Examples: HiL and CAN Bus Sensor integration

Vehicle Validation Cascade

Simulation

- fast, flexible and cheap in operation, there are already ESC homologation
- processes in simulation is only as good as the model(s)

AVL DRIVINGCUBE[™]

- close to real operation, chassis dynos are already established for homologation (emissions)
- limited in terms of lateral dynamics

Proving Ground

- + very close to the real operation
- expensive, high effort, less repeatability

The most efficient validation will be done by those who will use the best combination!

4 tests:

~10 min

Confidential for PDiM Sweden 2019

4 tests:

< 1 min

4 tests:

 $\sim 1 \, day$

The AVL DRIVINGCUBE™...

...as vehicle integration lab

Different functions and perceptions must be evaluated at a certain time in the vehicle.

The DRIVINGCUBE is the only test environment for reproducible and repeatable test on vehicle level!

... for security testing

Hacking attacks to evaluate the security of the

vehicle must also be performed during operation of the vehicle. Do you want to try an attack on a highway at high speed?

... to reproduce critical scenarios and tests

Critical Scenarios (in general or determined out of simulation) must be analyzed on vehicle level in a reproducible way.

... as most efficient test instance for a lot of use cases

For vehicles of category M	1, N1	
Speedrange	1	>130 km/h
Maximum value for the specified maximum lateral acceleration	85	3 m/s²
Minimum value for the specified maximum lateral acceleration		0.3 m/s ²

Different uses cases in validation and also homologation can not be executed efficiently in other test instances (e.g. ECE 79: LKA above 130km/h)

AVL DRIVINGCUBE[™] Top-Level Use Cases

vehicle integration and collaboration lab

- before going on the real road all functions and perceptions must be integrated in the vehicle and validated
- Evaluating malfunctions requires a collaboration of the involved engineers on the vehicle
- It is not efficient to cover all these test on a proving ground

safe validation instance for safety critical test

- In the validation process there are a lot of critical and dangerous scenarios and test cases
- If those have to be validated with the integrated vehicle in the loop, proving ground and of course the real road is not safe enough

safety and security testing with driving vehicle

- During safety and security testing the behavior of the vehicle is manipulated also during operation (cyber attack, broken cable, malfunction of sensor, etc.)
- Safety and security testing requires the integrated vehicle
- Testing this on proving grounds or real roads is too dangerous

5

reproduce test cases from simulation on vehicle level

- Simulation will be used to scale testing of AD/ADAS systems (different vehicle variants, different scenarios and test cases)
- Interesting resp. critical scenarios must be reproduced and investigated in an test instance with a higher fidelity
- reproducing the tests on the proving ground is hard to perform

	1
·	•

Most efficient test instance for a lot of use cases

- Some test cases must be performed with the integrated vehicle in the loop (to test the behavior and functions on system level)
- A lot of use cases cannot be performed in an efficient way on the proving ground or the real road (e.g. lane keeping)

Contribution to generate simulation models

- Simulation will be used to scale testing of AD/ADAS systems (different vehicle variants, different scenarios and test cases)
- Simulation requires validated models of the vehicle dynamics, efficiency, etc. (depending on the use cases)
- Test beds are predestined to determine model parameters

Homologation for ADAS/AD

- Clearly unreasonable to perform the homologation using only real world testing.
- Instead, homologation of ADAS/AD will be performed in both the real world and the virtual world.
- Three pillar approach is recognized as main approach from several key stakeholders:
 - Virtual testing
 - Physical testing(track, ViL)
 - Real world testing

Homologation Approach from TUEV SUED

TOV SOD Auto Service Grobhi (GTC Europe 2018

Introduction and Background Joint Project with OEM based on ENABLE-S3 results

Project Goals: Develop/apply a tool chain and methodology for virtual-based homologation of a LKA based on UN Regulation R79

Project Setup: OFM: Use case and vehicle + vehicle model Execution of physical and virtual tests Virtual-based homologation methodology Partner: KPIs & criteria for model validation & LKA assessment AVL: Tools for virtual testing and simulation, incl. Vehicle-in-the-Loop testbed Integration of simulation models Tools for evaluation and reporting

AVL Mini Driving Cube

Current use cases

Highway pilot

Platooning

Confidential for PDiM Sweden 2019

management

Benchmarking

Project Reference (2018): Platooning

🧠 🕅 📴

6

virtual environment after 2 weeks!

∧ 📹 💭 09 042018

Confidential for PDiM Sweden 2019