

E-MOBILITY AFTERSALES

Battery lifetime cycle & aging models, diagnostics

Katia Giovanella, Marzena Pietras

AVL DiTest GmbH

Public

ABOUT US

AVL GROUP

Battery Lifecycle

From raw to raw material

Battery Aging

Main influencers for the battery aging and how it impacts the user

BATTERY AGING DRIVERS

DITEST

QUESTION:

WHAT ARE THE AGING DRIVERS FOR THE TRACTION BATTERY IN THE ELECTRIC VEHICLE?

AGING DRIVERS – WHAT INFLUENCES BATTERY LIFETIME?

DITEST

Vehicle operation mode

Driving, parking, charging

Environment

Road profile, climatic condition

Battery pack design

Cooling system, electrical connection, mechanical load

Cell design and chemistry

Material degradation, chemical reactions

Source: AVL

BATTERY LIFETIME IN AUTOMOTIVE APPLICATIONS

DITEST

QUESTION:

WHAT % OF REMAINING CAPACITY IS CONSIDERED AS ENF OF BATTERY LIFETIME FOR AUTOMOTIVE APPLICATIONS?

a) 50%
b) 80%
c) 90%

HOW IS THE BATTERY LIFETIME DEFINED?

E S

400

300

250

Ð 350

ິ

Driving

AGEING MECHANISMS IMPACTS

DITES

For the battery pack

- Capacity fade
- Power fade
- Self discharge
- Increase of internal resistance
- Heat generation increase over time
- Safety issues

For the vehicle user

- Reduction of driving range
- Poor performance (acceleration, top speed, hill climbing)
- Increase of energy consumption

HOW CAN BATTERY AGING BE MODELED?

DITEST

AVL is working on different modeling approaches:

Source: AVL

BATTERY LIFE CYCLE ALONG THE VALUE CHAIN

Depending on the use case, **different modeling approaches** are used.

Source: AVL

High voltage

Challenges of high voltage technology in aftersales

a) 30VAC / 60VDC b) 50VAC / 120 VDC c) 1000VAC / 1500VDC

THE INTERNATIONAL ELECTROTECHNICAL COMMISSION DEFINE HIGH VOLTAGE AS

QUESTION:

AVL

HIGH VOLTAGE ACCORDING TO IEC

DITEST

IEC voltage range	AC RMS voltage (V)	DC voltage (V)	Defining risk
High voltage	> 1 000	> 1 500	Electrical arcing
Low voltage	50 to 1 000	120 to 1 500	Electrical shock
Extra-low voltage	< 50	< 120	Low risk

In automotive engineering, high voltage is defined as voltage in range 30 to 1000 VAC or 60 to 1500 VDC

CHALLENGES DUE TO THE HV TECHNOLOGY

Special High Voltage training required

Purpose	General repair (Maintenance and repair excluding high voltage electrical systems)	Working on high voltage electrical systems (de-energised)	Working on high voltage electrical systems (life working)
Example	 Test driver Bodywork Oil, wheel change 	 Disconnect HV power Secure against restoration of HV power Verify zero potential on all HV components Exchange of HV Components (de-energized) 	 Troubleshooting Exchange HV System under voltage (or near any component under voltage)
Training	• Level 1	• Level 2	• Level 3

DGUV Information 200-005 - Qualifizierung für Arbeiten an Fahrzeugen mit Hochvoltsystemen (bisher: BGI/GUV-I 8686)

WHY VETTEL IS JUMPING?

DITEST

a) He is happy to win the Russian circuit

b) He is unhappydue to the incident

c) His car is electrical unsafe

Workshop Repair process of EVs

From exchange to repair of the traction battery

LOCATION OF REPAIR WORKSHOPS

DITEST

Centralized

- Few repair centers
- Highly sophisticated process

Free market

- Independent workshops
- Uncontrolled by OEM
- Training required

Decentralized

- Each authorized repair shop
- Simple process
- Fast

FAILURES IN A HIGH VOLTAGE POWERTRAIN

DITEST

DIAGNOSTIC IS NOT ALWAYS ENOUGH MEASUREMENTS ARE ALSO NEEDED

REPAIR OF THE TRACTION BATTERY WHAT CAN BE DEFECTIVE IN A BATTERY

DITEST

Which parts are likely to get a defect in real life (empirical)

- Cells / Modules
- Cooling system
- Isolation
- Cables
- Connectors
- Electronics
- Sensors
- Contactors
- Fuse
- Housing
- Sealing
- Membranes

Katia Giovanella, Marzena Pietras | EMOB | 28 November 2019 | 25

FAILURES IN THE HIGH VOLTAGE POWERTRAIN AVL

 Read the diagnostic and follow guided steps
 Prove it is safe to work
 Localize the failure component
 Exchange the component
 Check equipotential bonding check and isolation resistance
 Check the diagnostic and print job protocol

F

GUIDED AND DOCUMENTED

DITEST

- For all repair steps

- Easy to use
- Guided fault diagnosis
- Self-explanatory GUI
- Process protocol
- Authorization levels

WHAT ABOUT HV SAFETY OF THE PROCESS?

DITEST

Acti	of the HV battery
	Proof that system is deenergized is needed
Details	

Deinstallation of a HV component

Before reenergizing HV system an isolation resistance

Equipotential bonding check is needed to prove HV

check is mandatory (ECE100, SAE J1766)

Reinstallation of HV battery

Safety (ECE R100)

٠

٠

S

SOH Estimation

State of Health estimation in the module level

STATE OF HEALTH

- SOH measurement method has no standard.
- SOH refers to the current state of the battery in comparison to the condition in the beginning of its life.
- Mainly characterized by the loss in capacity and the increase in resistance.

End-of-Life (EOL) conditions could be: 70%-80% of initial capacity 250% of initial resistance

ΙΤΕ ΣΤ

STAKEHOLDERS IN AFTERSALES

DITEST

STATE OF HEALTH (remaining life, remaining value, energy throughtput)

- Technical expert (insurance, ÖAMTC ...)
- Vehicle dealer (exchange used vehicles)
- Leasing company (residual value)
- Vehicle manufacturer (warranty costs)
- Workshops (exchange of batteries and repair)
- Disposer (evaluation if 2nd Life is possible in stationary use)

ANALYZE BATTERY QUALITY METHODS

DITEST

HOW CAN THE SOH OF THE MODULE BE MODELED?

DITEST

Battery 2nd Life and Recycling

What is the business behind?

BATTERY 2ND LIVE PROJECT EXAMPLES AS ENERGY STORAGE

DITEST

Volvo bus batteries find 2nd life as solar energy storage (Dec. 2018)

Quelle: www.volvobuses.com

ELSA: STORING LOCAL ENERGY THANKS TO SECOND LIFE BATTERIES (Nov. 2018)

ELSA (or Energy Local Storage Advanced) is an energy storage project funded by the European Union (EU)

BATTERY LIFETIME MANAGMENT

DITEST

Waste management hierarchy

Source: Recycling lithium-ion batteries from electric, Nature, Vol 575

E-Mobility Aftersales Outlook

E-MOBILITY AFTERSALES OUTLOOK & TRENDS

- Design for 2nd Life and Recycle needed to optimize the battery usage through the total lifecycle
- Decentralized repair strategies on module level reduces TCO
- SOH estimation within short time is required for second hand marked
- Alternative solutions for SOH estimation are still under consideration
- Trend is to track the entire life cycle information of the battery (on pack and module level)

DITEST

LOCATION

EMAIL

AVL DiTest GmbH Alte Poststrasse 156 8020 Graz Austria marzena.pietras@avl.com katia.giovanella@avl.com

WEBSITE

www.avlditest.com

THANK YOU

www.avlditest.com

www.avlditest.com

VL 000