

WORK ON SUSTAINABLE ENGINES

LUCIEN KOOPMANS

How many years will the IC Engine survive as part of the powertrain in new vehicles?

CHALMERS UNIVERSITY OF TECHNOLOGY

REGULATIONS

TAILPIPE

BATTERY ELECTRIC VEHICLES

Estimation based on multiple sources

2°C target

ENERGY CARRIER

Energimyndigheten drivmedelredovisning 2017 https://spbi.se/uppslagsverk/fakta/berakningsfaktorer/energjinnehall-densitet-och-koldioxidemission/ https://www.electricitymap.org/?page=map&solar=false&remote=true&wind=false https://www.adac.de/rund-ums-fahrzeug/tests/elektromobilitaet/stromverbrauch-elektroautos-adac-test/

Diesel:	285	gCO2/kWh
Gasoline:	327	gCO ₂ /kWh
Vehicle gas:	68	gCO2/kWh
HVO100:	11	gCO ₂ /kWh

Passenger cars: VW e-Golf: 17,3 kWh/100km	Swe Ger Pola	eden 10 gCC many 69 gC and 121 gCC	D2/km O2/km D2/km
Jaguar I-Pace: 27,6 kWh/100k	m	Sweden 17 Germany 1 Poland 193	gCO2/km 10 gCO2/km gCO2/km
VW Golf 1.6 TDI SCR: 5 I/100k	km	Diesel 127 HVO100 15	gCO2/km 5 gCO2/km
Jaguar F-Pace 20d: 6,6 l/100ki	m	Diesel 168 HVO100 20	gCO2/km) gCO2/km
Golf 1.5 TGI Blue Motion: 3,9 k	(g/1	00km	CNG 107 gCO2/km Vehicle gas 35 gCO2/km

FOCUS AREAS

Engines and propulsion systems Combustion and sprays

Renewable fuels

RENEWABLE FUELS

How do renewable fuels impact on emissions and efficiency and what is the best renewable fuel for existing and future engines?

FOCUS AREAS

Engines and propulsion systems Combustion and sprays

- Renewable fuels
- Energy conversion

ENERGY CONVERSION

How can we improve the efficiency of the combustion engine in the operating regions?

FOCUS AREAS

Engines and propulsion systems Combustion and sprays

- Renewable fuels
- Energy conversion
- Emissions

EMISSIONS

How can emissions become zero?

FOCUS AREAS

Engines and propulsion systems Combustion and sprays

- Renewable fuels
- Energy conversion
- Emissions
- Electrification

ELECTRIFICATION

18.00

16.00

14 00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

Micro Hybrid

Mild Hybrid

20.00 EngineState part Engine

Full Hybrid

How can electrification and combustion benefit from each other in the system?

How can we achieve best efficiency and emissions real-time?

Mindaugas Melaika & Sarp Mamikoglu 3000

2250

Engine Speed [RPM]

CHALMERS

COMBUSTION AND PROPULSION SYSTEMS

Enabling sustainable transport with zero harmful emissions

Highly efficient and ultra-clean internal combustion engines and propulsion systems

SIMULATION

Develop more predictive CFD models for all types of engine combustion and sprays

Develop EATS models

Supporting experimental investigations

SUSTAINABLE ENGINE WORK HIGHLIGHTS

HOMOGEOUS LEAN COMBUSTION Gasoline

Investigating the operating boundaries using single cylinder testing

Kristoffer Clasén

RENEWABLE FUEL Heavy Duty Diesel

		A25	B50	B75	C75
Speed	rpm	1200	1500	1500	1800
Torque	Nm	85	160	239	209
EGR	%	16,5	12,9	12,5	17,5

Investigating the effects of different renewable fuel blends

UREA SPRAY Diesel and lean exhaust gas aftertreatment

Investigating different UREA spray properties

SCR

Petter Dahlander

WATER INJECTION Spark ignited engines

ULTRA HIGH FUEL PRESSURE gasoline

Akichika Yamaguchi & Sandip Wadekar

DO NOT TURN YOUR BACK ON ENGINE DEVELOPMENT

WORK ON SUSTAINABLE ENGINES!

CHALMERS UNIVERSITY OF TECHNOLOGY