

AVL Commercial Driveline & Tractor Engineering GmbH

Model-Based Systems Engineering

for Optimized Electrified Trucks and Buses

Martin Ackerl

What are the challenges in powertrain development?

1. How to handle variant diversity of commercial vehicles in powertrain development?

2. How does the "optimal powertrain" look like?

3. What are the challenges in electrified powertrain development?

AVL 00

1. Powertrain Systems Engineering

2. Powertrain Optimization

3. Example / Case Study with conventional powertrain

1. Powertrain Systems Engineering

2. Powertrain Optimization

3. Example / Case Study with conventional powertrain

V-Process in Systems Engineering

Integration

Target Definition \rightarrow Vehicle

Stakeholder:

Goods transportation industries, local public transport, governments, company strategy, legislation, construction industry, ...

Application:

Inner city bus line, urban bus line, intercity bus line, intercity travel, urban delivery, regional delivery, intercity delivery national deliver, international delivery, garbage collection, construction site support (tipper, concrete mixer, ...), ...

Needs:

Zero Emission, daily driving range, goods loading and unloading time, acceleration demands, ...

Vehicle:

 Electric city bus, fuel cell long haul truck, diesel intercity combination, electric distribution truck, ...

Requirements definition and specification supported by **model based systems engineering**

Overview "AVL Layer Structure"

Level 0 Vehicle

Level 1 Vehicle Sub-Systems

Level 2 Elements (i.e. Engine, Transmission,...)

Level 3 Element Sub Systems (e.g. Valve Train, Hybrid Control System)

Level 4HW Parts / SW System / EHW

> Level 5 SW Components

?

E-DRIVE FAMILY INVESTIGATION TOOLKIT Application, Powertrain, e-Motor, Transmission, FC and Battery

E-DRIVE FAMILIES Example Modular Solution

Application	GVW [t]	TM Speeds	Cont. Power [kW]	Topology	E-Motor	Transmission
Truck 4x2	8	single	110	Center Drive	110 kW	single-speed, 110 kW
Truck 4x2	16	multi	147	Center Drive	175 kW	multi-speed, 175 kW
¹ 6x2	26	multi	213	Center Drive	2 x 110 kW	Summary TM + multi-speed, 220 kW
Bus 6m	8,5	single	92	Center Drive	110 kW	single-speed, 110 kW
City Bus 12m	19	single	179	Center Drive	175 kW	single-speed, 175 kW
City Bus 18m	29	single	260	Center Drive	110 kW + 175 kW	Summary TM + single-speed, 285 kW

E-DRIVE FAMILIES Specific Solution

	Application	GVW [t]	TM Speeds	Cont. Power [kW]	Topology	E-Motor	Transmission
	Truck 4x2	8	single	110	integrated e-axle	110 kW	single-speed, 110 kW
- Cestle	Truck 4x2	16	multi	147	integrated e-axle	148 kW	multi-speed, 148 kW
	Truck 6x2	26	multi	213	Center Drive	2 x 110 kW	Summary TM + multi-speed, 220 kW
f	City Bus 6m	8,5	single	92	wheel selective drive	2 x 50 kW	2 x single-speed, 50 kW
	ity Bus 12m	19	single	179	wheel selective drive	2 x 90 kW	2 x single-speed, 90 kW
	ity Bus 18m 29	29	single	260	wheel selective drive	2 x 90 kW	2 x single-speed, 90 kW
		27	Single	200	wheel selective drive*	2 x 50 kW	2 x single-speed, 50 kW

* Structural parts to be adapted

1. Powertrain Systems Engineering

2. Powertrain Optimization

3. Example / Case Study with conventional powertrain

Powertrain optimization **Why**?

- Fuel consumption target (e.g. legislation, ...)
- Product cost limit / total cost of ownership
- Vehicle requirements (performance, drivability, ...)
- Target market (best in class, low cost, ...)
- Zero Emission Zones (electrification/hybridization)

Important OEM questions to be answered (e.g. transmission):

- Which engine technology?
- Which gear ratios (transmission and axle) in combination with the engine?
- How many shift able gears?
- Gear shift strategy?
- Hybridization/Electrification concept?

Powertrain optimization Task definition

- 1. Variation of powertrain parameter within simulation
 - e.g.
 - Engine technology
 - Transmission gear ratios
 - Rear axle ratio
 - Powertrain calibration
- 2. Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.
 - Fuel consumption
 - Production costs
 - Performance
 - Drivability

Martin Ackerl | 27 November 2018 | 16

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

- Transmission gear ratios
- Rear axle ratio
- Powertrain calibration

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Fuel consumption
- Production costs
- Performance
- Drivability

Variation of engine technology

- Different full load characteristics
- Different fuel consumption maps

AVL

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

Engine technology

Powertrain calibration

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Fuel consumption
- Production costs
- Performance
- Drivability

Variation of gear ratios

- Different transmission technologies (#gears, gear spread, OD/DD)
- Different rear axle ratios

Martin Ackerl | 27 November 2018 | 18

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

- Engine technology
- Transmission gear ratios
- Rear axle ratio

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Fuel consumption
- Production costs
- Performance
- Drivability

Variation of powertrain calibration parameter

• E.g. different upshift and downshift characteristics for gear shifting

AV

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

- Engine technology
- Transmission gear ratios
- Rear axle ratio
- Powertrain calibration

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Production costs
- Performance
- Drivability

Evaluation of fuel consumption

• Vehicle driving on defined drive cycle (**Simulation**)

Martin Ackerl | 27 November 2018 | 20

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

- Engine technology
- Transmission gear ratios
- Rear axle ratio
- Powertrain calibration

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Fuel consumption
- Performance
- Drivability

Evaluation of production cost

- **Estimation** of product cost for different technologies
- Overall cost of selected powertrain configuration

AV

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

- Engine technology
- Transmission gear ratios
- Rear axle ratio
- Powertrain calibration

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Fuel consumption
- Production costs
- Drivability

Evaluation of performance

- Startup gradeability (Simulation)
- Vehicle acceleration (Simulation)

Powertrain optimization Task definition

Variation of powertrain parameter within simulation e.g.

- Engine technology
- Transmission gear ratios
- Rear axle ratio
- Powertrain calibration

Optimization with respect to evaluation criteria (output of simulation or AVL knowhow) e.g.

- Fuel consumption
- Production costs
- Performance

Evaluation of drivability

• E.g. number of gear shifts on defined drive cycle (Simulation)

AV

Powertrain optimization Main idea

Knowhow based

Mathematic based (Simulation and Optimization)

Customer based

Using expert knowledge for

- definition of variation parameters and range
- definition of knowhow based evaluation criteria (production costs,...)

Mathematical simulation and optimization

- Using system **simulation** of overall vehicle and powertrain
- Using **DoE** (Design of Experiment) approach for intelligent parameter variation
- Using **KPI models** for optimization
- Select optimal powertrain configuration
 - Set boundary conditions for evaluation criteria based on customer input

Powertrain optimization Optimization tool

AVL Cameo

- Automation software tool ٠
- Interface to Cruise M longitudinal vehicle simulation ٠
 - trigger simulations •
 - data exchange
- Setup and run DoE test plans ٠
 - Different DoE approaches available (core DoE, active DoE,...)
- Generation of KPI-models ٠
 - Multi-dimensional analytic model •
 - Relation between parameters and/or evaluation criteria

Final drive ratio

39.5

- Short calculation time
- **Optimization** of parameters based on KPI-models •

a) Cameo Toolchain for powertrain optimization

KPI-models 40.5 Fuel consumption in I/100km

AVL Cameo optimization via KPI-models

b) Cruise M

Powertrain optimization Methodology explanation

1. Powertrain Systems Engineering

2. Powertrain Optimization

3. Example / Case Study with conventional powertrain

Powertrain optimization of 40t HD Truck:

- Setup vehicle model with variation parameter
- Run DoE test plan
 - Cameo triggers simulations
 - Different parameter combinations simulated
 - Pareto fronts (optimal solutions) generated
 - → Resulting in class of optimal solutions
- Mathematical optimization
 - Calculation of KPI-models
 - Set boundary conditions for evaluation criteria
 - Optimization of powertrain variation parameter

Powertrain parameter	Variation range
Engine type	Base vs. Downspeed
Transmission type	DirectDrive vs. Overdrive
Gear spread	1020
Final drive ratio	14
Gear shift characteristics	7 variation parameter

Powertrain variation parameter

Exemplary results of Cameo DoE optimization (pareto fronts for different powertrain configurations)

Powertrain optimization of 40t HD Truck:

- Setup vehicle model with variation parameter
- Run DoE test plan
 - Cameo triggers simulations
 - Different parameter combinations simulated
 - Pareto fronts (optimal solutions) generated
 - → Resulting in class of optimal solutions
- Mathematical optimization
 - Calculation of KPI-models

Powertrain parameter	Variation range
Engine type	Base vs. Downspeed
Transmission type	DirectDrive vs. Overdrive
Gear spread	1020
Final drive ratio	14
Gear shift characteristics	7 variation parameter

Powertrain variation parameter

Exemplary results of Cameo DoE optimization (pareto fronts for different powertrain configurations)

Martin Ackerl | 27 November 2018 | 32

Powertrain optimization of 40t HD Truck:

- Setup vehicle model with variation parameter
- Run DoE test plan
 - Cameo triggers simulations
 - Different parameter combinations simulated
 - Pareto fronts (optimal solutions) generated
 - → Resulting in class of optimal solutions
- Mathematical optimization
 - Calculation of KPI-models

Powertrain parameter	Variation range	
Engine type	Base vs. Downspeed	
Transmission type	Overdrive	
Gear spread	20	
Final drive ratio	2.68	
Gear shift characteristics	7 fixed parameter	

Powertrain variation parameter

Exemplary results of Cameo DoE optimization (pareto fronts for different powertrain configurations)

Martin Ackerl | | 27 November 2018 | 33

Powertrain optimization of 40t HD Truck:

- Setup vehicle model with variation parameter
- Run DoE test plan
 - Cameo triggers simulations
 - Different parameter combinations simulated
 - Pareto fronts (optimal solutions) generated
 - → Resulting in class of optimal solutions
- Mathematical optimization
 - Calculation of KPI-models

Powertrain parameter	Variation range
Engine type	Base
Transmission type	Overdrive
Gear spread	20
Final drive ratio	2.68
Gear shift characteristics	7 fixed parameter

Powertrain variation parameter

Exemplary results of Cameo DoE optimization (pareto fronts for different powertrain configurations)

Martin Ackerl | | 27 November 2018 | 34

Summary

Model based Systems Engineering for Optimized Powertrain Systems

still needs:

- Expert know-how
- Customer/Expert review of results
- \rightarrow support decision making for further detailed investigations

but has the potential to:

- Handle variants diversity of vehicles and powertrains
- Find the optimal solutions for electrified powertrain variants
- Visualize the optimal solutions (Pareto Fronts) for expert decision
- → support to find a modular electrified powertrain concept for a vehicle portfolio

What are the challenges in powertrain development?

1. How to handle many variants of commercial vehicles in powertrain development?

2. How does the "optimal powertrain" look like?

3. How challenges in electrified powertrain development can be look like?

