

Testing of Emissions-Relevant Driving Cycles on an Engine Testbed

Dr. Klaus Rothbart

RDE as a Challenge for the Development

MOUNTAIN

RANDOMNESS

Driving style has a strong impact on the

equipment – shocks and vibrations.

EXTREME CONDITIONS

AMBIENT TEMPERATURE

Changing ambient temperatures can strongly impact the quality of RDE test data.

AMBIENT PRESSURE

Changing ambient pressure is the key decision criterion for the selection of PEMS analyzers..

RDE as a Challenge for Methods and Processes

Robustness Validation

- No clearly defined targets, cycles, etc.
- Vehicles must be robust against the environment (road, traffic, etc.) and the driver (behaviour)

Robustness Validation Approaches necessary

Increase of Simulation

- Real roads and drivers must be simulated
- Easy physical models for vehicles are necessary (parameter studies)

Testbench: Engine out				
emissions	Nox	HC	со	CO2
Test variation	g/km	g/km	g/km	g/km
Driver mild_no_traffic	0.237	0.042	0.105	123
Driver mild_traffic	0.333	0.041	0.121	150
Driver_mild_traffic_add_200kg	0.350	0.032	0.078	160
Driver_hot_no_traffic	0.320	0.041	0.107	129
Driver_hot_no_traffic_V2	0.323	0.033	0.084	129
Driver_hot_traffic	0.471	0.040	0.106	161

Process integratable simulation is needed

Advanced Evaluation and Data Management

- Big data and long cycles
- Data / Configuration / Model Management
- Patterns are hard to recognize due to changing cycles

New Evaluation Methods and Tools are necessary

From Road to Lab – a continuous approach for RDE

Consistent Data Management

Motivation

- Chassis Dynos utilization is higher than ever
 - Reason:

Possible Strategies:

app. 5 times more effort per type approval

- Build new Chassis Dynos
- Virtual Testing: Extend existing engine test beds with simulation
 - ⇒ Reduce load of Chassis Dynos for development tasks

Only RDE? Vehicle Compliance Demonstration – in US

OEM Fleet Averaged GHG Phase 2 Compliance

- All vehicles must be simulated in GEM.
- Production testing,
 Technology Credits
 require powertrain or
 vehicle testing.
- Complexity of options mean more upfront analysis and impact of technology selection on certification costs.
- Certification data may be made public
 - In-use compliance

Options 2 and 3 are the most likely to be used

- GEM ... Greenhouse Gas Emissions Model
- GHG ... Greenhouse Gas Emissions

Public

Customer Use Case

Engine Testbed

Stakeholder

earlier

faster

better

Convince Franck

Why? - Franck must be able to rely on a new approach

How? - Reproduction of road measurements

on an engine testbed

- Simulation models
 - Vehicle
 - Transmission & TCU
 - Driver
- Methodology
 - Import of the road measurement
 - Application on the testbed
 - Validation of the tool chain

Overall System Scheme

Simulation Models

AVL VSM – Vehicle Simulation Model

Qtronic Silver – Transmission and TCU Model

AVL Driver

Methodology

Generation of the virtual 3D Road

Generation of virtual 3D road from combination of noisy vehicle measurement data (GPS, IMU, Vehicle CAN) and digital map data (e.g. Google Earth).

Road curvature and gradient are calculated by optimization

 \rightarrow realistic lateral acceleration and gradient

Validation on the Engine Test Bed

STEP 2.1: Engine Testbed: Reproduction n/alpha

Measured throttle pedal and engine speed are run in open-loop control.

Restbus simulation also originates from the measurement

STEP 2.2:

Vehicle Model:

Driving Resistance

Final adjustment of road load

Reproduction v/alpha

Measured throttle pedal is run in open-loop mode.

Vehicle speed is controlled by the driver via an additional road load.

Results

Compare Road, Chassis Dyno and Engine Testbed

Investigated Vehicle

Details

Time course of gear, acceleration pedal, engine speed, engine torque and vehicle speed show good correlation.

Statistic Analysis

Operating Point

RDE Dynamic Criteria

Factors Influencing Emission Results

Emission Result - Overall

CO, % of road measurement

CO2, % of road measurement

CO2 and CO show a good match

- Conclusion
- Result quality of the engine test bed and the chassis dyno are equal
- Franck can shift development tasks from the road and chassis dyno to the engine test bed
- Know-How about the influence of boundary conditions on emission results must be considered

