

Global efficiency and torque accuracy optimization for an EESM

Lecturer

Gerhard Gaugl

- Senior Application Engineer for CAMEO
- In AVL since 2007
- Application Engineer & Personal Agent
- CAMEO on Testbed, CAMEO for E-Drive
- Married, two Daughters
- MTB (without E-Drive), Piano, RC Model Building

Agenda

1 What is the Challenge

2 **EESM – External Excited Synchronous Machine** Properties and possibilities with this machine

3 How we get the Solution How did we face the challenge and what was the solution

Results Were we able to get satisfactory results?

Q&A

4

5

Agenda

What is the Challenge 1 2 **EESM – External Excited Synchronous Machine** Properties and possibilities with this machine 3 How we get the Solution How did we face the challenge and what was the solution 4 Results Were we able to get satisfactory results? Q&A 5

Public

Agenda

2 **EESM – External Excited Synchronous Machine** Properties and possibilities with this machine

3 How we get the Solution How did we face the challenge and what was the solution

> **Results** Were we able to get satisfactory results?

Q&A

/ 6

4

5

EESM – Characteristics I

- Good behavior in every speed
- No magnets
- Slip rings (alternative: Induction coils)
- Switch off possible
- Fail safe

Public

Uncritical temperature sensitivity

	PMSM	ASM	EESM
n < n _n	high efficiency	disadvantages in efficiency	good efficiency
n > n _n	low efficiency	advantages in efficiency	high efficiency
costs	higher production costs than ASM (magnet material)	design is simple and cheap (aluminium die-cast rotor)	Lower production costs than PMSM (no magnets)
durability	low maintenance	low maintenance	Slip rings
fault	critical (overvoltage, braking torque)	Uncritical	Uncritical
emperature sensitivity	critical (permanent magnets)	uncritical	Uncritical

 $EESM - I_{f}$

With I_f we...

- have a temperature model for Rotor Temperature
- can influence the field weakening
- have no magnets

I_d-I_q - Plot

- Temperature influences the Voltage Ellipse
- I_f influences the magnetic field of the rotor → the Torque Lines
- So, with I_f you have the possibility to depict different PMSMs

Variations for Torque

Torque [Nm]	Tot. Losses [W]	I _f [A]	I _q [A]	I _d [A]	ModIndex
25.59	2610	4.60	103.44	-56.56	1.09
25.59	2620	4.37	99.56	-64.03	0.88
25.59	2662	4.06	105.47	-59.34	0.87
25.59	2764	3.30	115.78	-77.31	0.69
25.59	2876	4.51	115.09	-73.09	0.89
25.59	2928	4.75	116.31	-75.56	0.92
38.13	1060	3.31	113.59	-7.88	0.27
38.13	1113	4.09	113.91	-8.84	0.31
38.13	1154	4.16	116.19	-7.97	0.31
38.13	1252	3.29	133.31	-11.06	0.28
38.13	1329	4.76	129.09	-10.00	0.34
38.13	1389	4.98	133.53	-10.44	0.35
66.91	2922	6.23	177.94	-55.31	0.92
66.91	2924	7.49	171.28	-61.94	0.96
66.91	3224	4.96	203.41	-67.31	0.82
66.91	3224	4.96	203.41	-67.31	0.82
66.91	3378	7.46	201.56	-72.88	0.97
66.91	3378	7.46	201.56	-72.88	0.97

Agenda

2

3

4

5

What is the Challenge
EESM – External Excited Synchronous Machine Properties and possibilities with this machine
How we get the Solution How did we face the challenge and what was the solution
Results Were we able to get satisfactory results?
Q&A

How we get the solution?

AVL Toolchain

Active DoE Workflow

Traditional DoE

Test – Model – Predict – Optimize: Too late for knowledge gained after testing to improve the testing phase

Standard DoE workflow

For high numbers of input dimensions or highly non-linear systems, even standard DoE has its limits

Optimization might fail or

Minimizing time per test

Active DoE

Public

Model and Predict *during* the test: Bring Knowledge forward to the testing phase

Standard DoE workflow

Minimizing time per test

Active DoE benefits

Predictive Intelligence during testing

- Intelligently focus testing on target areas
- Reduce points logged by >30% (for 5+ inputs)
- Auto-stop test when enough data gathered

- Avoid dangerous or uninteresting areas
- Improve model quality

Active DoE Test in CAMEO

Torque accuracy optimization for an EESM | Gerhard Gaugl | 08 März 2023 | AVL 🎇

Active DoE Test in CAMEO

Measurements and DoE Conditions

Measurements: 🕂 💥 🛱 🚺 💷 🥕 Step Approach 🥕 Continuous Approach											
No.	Name	Туре	Meas. Time	Sample Time	Drift Tolerance [%]	Max Std. Dev.	Alive Tol.	Active DoE	Minimum Output	Maximum Output	Active DoE Type
1	TORQUE	Mean	2	1	0.05	00	0		expected_tq_start-3	expected_tq_start+3	Standard
2	Mod.Ratio	Mean	2	1	0.05	00	0	\checkmark	- Infinity	Max.Ratio	ModelLimit
3	.EFFICIENCY_3	Mean	2	1	0.05	00	0	\checkmark	80	100	Standard
4	.EFFICIENCY_4	Mean	2	1	0.05	00	0	\checkmark	80	100	Standard
5	.MECA_POWER	Mean	2	1	0.05	00	0	\checkmark	0	180	Standard
6	List of Measurements	GlobalList	2	1	0.05	00	0				Standard

- Active DOE (multi-criteria approach)
- While test is running the Stator- Rotor-Temperature, Modulation Index and Maximum Current are monitored all the time with certain reactions.
- With predefined Variation areas AND multiple Criteria it is possible to create a test design in an easy way

Agenda

2

3

4

5

What is the Challenge

EESM – External Excited Synchronous Machine Properties and possibilities with this machine

How we get the Solution How did we face the challenge and what was the solution

Results Were we able to get satisfactory results?

Q&A

Raw Data Analysis Repeatability measurements

/ 20

Public

Repeatability:

Same color for the points with same Speed, I_d , I_q and I_f

$$ModRat_{calc} = \frac{\sqrt{V_d^2 + V_a^2}}{\frac{U_{hatt}}{\sqrt{3}}}$$

- Check of repeatability for torque, modulation ratio calculated and total losses
- This was done also for U_d , U_q
- Repeatability shows how good is the stability of the whole system
- Good repeatability avoids model overfitting
- Optimization results can't be better than the repeatability

Influence of I_f on Torque

Same color means same initial requested speed/torque points. Due to the variations in $I_d/I_q/I_f$, this graphic shows the range of different values we can reach for:

- Torque vs I_q
- Torque vs I_f

Modeling – Intersection Plot

Optimization

Torque Accuracy

Total System Efficiency / Total Losses

Inverter Losses = $P_{bat} - (P_{el} + P_{exc})$

Motor Losses = $P_{el} - P_{mech}$

 $Total \ Losses = P_{bat} - P_{mech}$ $Total \ Losses = Inverter \ Losses + Motor \ Losses + P_{exc}$

$$Total System Efficiency = \frac{P_{mech}}{P_{bat}}$$

Validation of Efficiency

Total Losses Difference [W]

Total System Efficiency Difference [%]

Take Away Points/ Benefits

- Less know how needed about inverter and E-Motor.
- Reliable results
- Time saving through "Active DoE" and loop reduction.
- More stable against noisy results.
- Keep system in stable conditions.
- Interrelations are presented clearly and simply
- Reusable Data
- Well representable
- Traceability

If there is a better way to do it - find it. Thomas Alva Edison (1847-1931)

Thank you

www.avl.com