

EU7 Standards Insights and 1st Interpretations

Webinar, 18th of November 2022

K. Engeljehringer, C. Martin, M. Weissbaeck, M. Wieser

Today's Moderator

Alan Forrest Sales Manager AVL Powertrain UK Limited

12 years with AVL

•

- ~13 years AVL UK
- 🔜 ~1 year AVL Austria
- Powertrain Calibration Engineer ~10 years
 - Diesel Engine
 - Focus on Aftertreatment (DPF)
 - Passenger Car and HDD
- Manager of AVL Powertrain UK Sales Team

This Digital webinar will be recorded and the recording is kept online on AVL's websites or partner websites as long as considered to serve the overall information and training purpose recorded for.

Please note that any communication or information you transmit during the webinar, such as voice, live instant messaging displaying names of those interacting, presentations etc. are available to the webinar audience and may also be included in the recording, which may be made available on-demand. As such, this information may be collected and used by other webinar participants or by viewers of the recordings. Please apply appropriate caution when disclosing any personally identifiable information or personally sensitive data.

For more information: <u>www.avl.com/privacy-policy</u>

Rules of Participation

RECORDING

The webinar will be recorded.

DISTRIBUTION

Recording of the webinar will be available and may be requested from the AVL organisation, its dissemination to third parties being totally prohibited without the prior written consent of AVL. Presentation material will be made available post event.

/ 5

CONFIDENTIALITY

Be aware in mind that other participants can see your participation and comments/questions you write.

PERSONAL MICROPHONES

During the entire webinar your microphone will be muted. Communication will be handled via the chat-function due to the high number of participants.

QUESTIONS

During the presentation you can send a question via the chat function either to the group or directly to the moderator, or later via email. In the Q&A session the collected chat-questions will be used.

RESPONSES

Time will be set aside at the end of each session to answer questions submitted via the chat function. At that moment you can activate the microphones.

Today's Presenters

Christian Martin

christian.martin@avl.com

Since 2016 Product Manager PC Powertrain Systems Gasoline

Michael Weissbaeck

michael.weissbaeck@avl.com

Since 1997 Business Field Leader PC & LDT Diesel

/ 6

Kurt Engeljehringer

Kurt.Engeljehringer@avl.com

Since 1986 Principal Business Development Manager Emission, Energy and Analytic measurement systems A member of AVGES groupe

Martin Wieser

martin.wieser@avl.com

Since 2004

Manager Development Commercial Engines

Content

Review of EU7/VII Commission Proposal

- Proposal Summary Comparison to EU6d Standard & former EU7/VII Proposals
- Implications for testing

Implications on Emission Concepts

PC/LD Segment - 1st evaluation/interpretation
 HD Segment - 1st evaluation/interpretation

Q&A

Content

Review of EU7/VII Commission Proposal

• Proposal Summary • Comparison to EU6d Standard & former EU7/VII Proposals

Implications for testing

Implications on Emission Concepts

PC/LD Segment - 1st evaluation/interpretation
 HD Segment - 1st evaluation/interpretation

Q&A

Euro-7/VII - Timeline

AGVES = Advisory Group on Vehicle Emission Standards CLOVE = Consortium for Low Vehicle Emissions

"European Green Deal" Targets for Euro-7

AVL 🗞

Criteria Emissions – Light Duty Euro-7 limits

Table 1: Euro 7 exhaust emission limits for M1, N1 vehicles with internal combustion engine										
Pollutant emissions	M1, N1 vehicles	Only for N1 vehicles with power to mass ratio ¹ les than 35 kW/t	Emission budget for trips less than 10 kn M1, N1 vehicles	r all for frips less than 10 km only for N1 vehicles with power to mass ratio less than 35 kW/t						
	per km	per km	per trip	per trip						
NO _z in mg	60	75	600	750						
PM in mg	4.5	4.5	45	45						
PN10 in #	6×10 ¹¹	6×1011	6×10 ¹²	6×1012						
CO in mg	500	630	5000	6300						
THC in mg	100	130	1000	1300						
NMHC in mg	68	90	680	900						
NH3 in mg	20	20	200	200						

Original Document of EU Commission proposal for Euro-7, 10.11.2022

Borderline between Light-Duty and Heavy-Duty for N1/N2 is a power to mass ratio of 35kW/t

Emission Budget for the first 10km in mg/trip. Above 10km a limit in mg/km

Emission Budget: mg/trip and mg/km

CLOVE proposal:

Emission Budget is a fixed absolute emission mass limit of 480mg for any test below 16km and 30mg/km above 16km.

EC proposal:

Emission Budget is a fixed absolute emission mass limit of 600mg for any test below 10km and 60mg/km above 10km.

3

Power limitation, for the first 2km for normal driving conditions, above extended driving conditions.

For extended RDE driving conditions an "Extended Driving Divider" of 1,6.

Criteria Emissions – Light-Duty Euro-7 limits

Component Candidates	Unit		EU-6d (M1)	Clove pro 27.04.20	o posal 021	EU Commission proposal 10.11.2022			Notes
		PI	CI	Testing	EU-7 (N	41)	EU-	7 (M1)	Testing	
CO2	mg/km	✓	\checkmark	Lab + RDE	✓	-	\checkmark		Lab	Needed for calculation, validation and for GHG legislation
CH4 + N2O	mg/km	-	-	-					-	
СО	mg/km	1000	500	Lab + RDE	400	-20%	500	0%	(Lab) + RDE	
NOx	mg/km	60	80	Lab + RDE	2030	-50%	60	-30% (1)	(Lab) + RDE	CF 1,43 down to 1
THC	mg/km	100	-	Lab	2545	-65%	100	100 0%		
NOx + THC		-	170	-						
CH4	mg/km	-	-	Lab	10	-	\checkmark	\checkmark		No limit only needed for if there is a NMHC limit
NMHC	mg/km	68	-	-			68	0%	(Lab) + RDE	
Alcohols	mg/km	-	-	-					-	
NMOG	mg/km	-	-	-					-	
PM	mg/km	4,5	4,5	Lab	2	-55%	4,5	0%	Lab	
PN	#/km	6E+11	6E+11	Lab + RDE	1E+11	-89%	6E+11	-55% ⁽¹⁾	(Lab) + RDE	CF 1,43 to 1. $\rm PN_{23nm} \rightarrow \rm PN_{10nm}$ results in app. 50% higher results
N2O	mg/km	-	-	-	10	New			-	New pollutant - stratospheric ozone depletion
NH3	mg/km	-	-	-	10	New	20	New	(Lab) + RDE	New pollutant - secondary PM formation
НСНО	mg/km	-	-	-	5	New			-	No limit only needed if there is a NMOG limit
		EC 715/20	C 715/2007 as amended EC 692/2008 % lowest EU-6 to higi proposal		to highest al					

Note ⁽¹⁾ (x%) represents the nominal limit number, (0%) -30% considers the also measurement modifications like Conformity Factor (CF) reduction and/or measuring more particle due to PN_{10nm} . A wider range of RDE test conditions is not considered, since it can hardly be quantified.

Criteria Emissions – Heavy-Duty Euro-VII limits

Component Candidates	Light-Duty	Unit	EU-VI Heavy-Duty M2, M3, N2 and N3						
			Cold emissions 100th percentile	Cold emissionsHot emissions100th percentile90th percentile		Idle emission if no 5min automatic engine shut off			
CO2	✓	mg/kWh	✓	\checkmark					
CH4 + N2O		mg/kWh	-	-					
СО	\checkmark	mg/kWh	3500	200	2700				
NOx	\checkmark	mg/kWh	350	90	150	5000 mg/h			
THC	\checkmark	mg/kWh	-	-					
NOx + THC		mg/kWh	-	-					
CH4	\checkmark	mg/kWh	500	350	500				
NMHC	\checkmark	mg/kWh	-	-					
Alcohols		mg/kWh	Needed for NMOG	Needed for NMOG	Needed for NMOG				
NMOG		mg/kWh	200	50	75				
PM	✓	mg/kWh	12	8	10				
PN _{10nm}	\checkmark	#/kWh	5E+11	2E+11	3E+11				
N2O		mg/kWh	160	100	140				
NH3	✓	mg/kWh	65	65	70				
НСНО		mg/kWh	30	30					

Criteria Emissions: RDE testing Euo-7/VII proposals

Public

Euro-7/VII – European Proposal

ANNEX V

APPLICATION OF TEST REQUIREMENTS AND DECLARATIONS

Table 1: Application of test requirements and declarations for M1, N1 vehicles for vehicle manufacturers

Test requirements	Tests and requirements at	Test	ts at c	onformity of	Tests at in-service	
	initial emission type approval		•	More clar	rification is needed	and will be part of
Gaseous pollutants and PN in road testing (RDE)	Required demonstration test for all fuels for which the type approval is granted and declaration of compliance for all fuels, all payloads and all applicable vehicle types	Not requ	•	the imple RDE Cycl • Standa • Rando • Road-f	ementing regulation e could be: ardized RDE cycle, m cycle generator, to-Lab reproduction	n work shops. like RTS95 like from TNO n of the RDE test
Gaseous pollutants, PM and PN in RDE cycles in the laboratory and CO ₂ emissions, fuel	Required where all pollutants cannot be measured on the	Required	d		Required where all pollutants cannot be measured on the	
consumption (OBFCM), electric energy consumption and electric range (Battery Durability) (WLTP at 23 °C)	road		•	Using on question	ly RDE for emissior able.	n validation is
CO ₂ ambient temperature correction (WLTP at 14°C)	Declaration ⁶	Not requ	•	Laborato accuracy,	ry instrumentation , robustness and ha	is unmatched in as the highest level
Crankcase emissions	Declaration that a closed crankcase system or routing to the tailpipe is installed ⁶	Required	•	of quality It is also (PEMS to	 control (PI check) the backbone of a Lab validation) 	ny PEMS test

Original Document of EU Commission proposal for Euro-7, 10.11.2022

Euro-7/VII – European Proposal

Table 6: Application of test requirements and declarations for type-approval and extensions of engines intended for M₂, M₃, N₂ and N₃ vehicles for Member States and recognised third parties/Commission

	Test requirements for each fuel	Tests and requirements at initial emission type approval	Tests at conformity of production	Tests at in service conformity	Tests at market surveillance
	Relevant actor	Type approval authority for issuing the type approval	Type approval authority	-	-
<u>H,</u>	Gaseous pollutants, PM and PN and CO ₂ emissions, fuel consumption on transient cycle (WHTC Cold and Hot)	Required on the parent engine and a declaration for all family members**	Audit or optional testing		

Table 3: Application of tests, declarations and other requirements for type-approval and extensions for M2, M3, N2 and N3 vehicles for manufacturers

Test requirements	Tests and requirements at initial emission type approval	Tests at conformity of production	Tests at in-service conformity
Gaseous pollutants, PM and PN in road testing (RDE) for each fuel and for the applicable vehicle categories (M_2 , M_3 , N_2 and N_3) and low load test (if applicable)	Required demonstration tests for all fuels for which the type approval is granted per vehicle type and a declaration of compliance for all fuels, all payloads and all applicable vehicle types	Conformity of production performed at engine level only	Required test on a vehicle with any fuel and on any vehicle category and any payload for all engine types every two year
CO ₂ and fuel/energy consumption, zero emission/electric range determination of a vehicle	VECTO licence	For components	Not required

Evaporative Emission (EVAP) (Gasoline only)

Annex I, Table 3: Euro 7 evaporative emission limits for petrol fuelled M₁, N₁ vehicles

Evaporative pollutant emissions (only gasoline)	M₁, N₁ with maximum mass up to 2650 kg	N₁ with maximum mass equal or more than 2650 kg
1. Hot soak + 2 day diurnal test	0.50 g at worst day + hot soak	0.70 g at worst day + hot soak
2. Refueling emissions	0.05 g/L of fuel	0.05 g/L of fuel

Challenges:

- 1. Reduced Hot-Soak and Diurnal limits might require app. 2 times larger canisters. For conditioning drive cycle, a climatic chassis dyno for 38°C. Modified calculations
- 2. Refueling emission will require new test systems.

Test and measurement systems are already existing in the AVL EVAP product portfolio (see picture).

Brake- and tire wear

Annex I, Table 4/5: Euro 7 brake Particle Emission limits in standard driving cycle

Brake particle emissions	M ₁ , N ₁	M2, M3	N ₂ , N ₃
Brake particle (PM ₁₀) emissions per vehicle	7 mg/km 2035: 3 mg/km	-	
Brake particle (PN) emissions per vehicle	-	-	

Current vehicles are 2 to 3+ times above the limit (Round robin results)

AVL Test and measurement systems are already available

Annex I, Table 6: Euro 7 tyre Abrasion limits

Tyre Abrasion	M ₁ , N ₁	м2, м3	N ₂ , N ₃						
Tyre Mass lost in g/1000km	-	-	-						
est procedure will be developed by UN-ECE, EU Commission to report									

on measurement method and limit proposal until end 2024

Battery durability and performance

Battery Durability o	of OVC-HEV and PEV	5 years or 100-000 km whichever comes first	Vehicles more than 5 years or 100 000 km, and up to whichever comes first of 8 years or 160 000 km	Vehicles up to additional lifetime
Ö -	Energy based battery capacity	80% (M1) / 75% (N1)	70% (M1) 65% (N1)	
	Electric Drive Range	?	-	

AVL Test and measurement systems are already available

Testing and Measurement: Can we test and measure it?

Application	Notes	Status	AVL Systems	Ready for Carbon-Free Fuels, like H2
Chassis dyno	 Some improvement required Analyzers with appropriate accuracy available Analyzers for new components available. NH3 measurement needs to be defined Automation systems needs an up-date 			H)
Engine test bed	 Some improvement required. Important is zero calibration, drift and time alignment. Low NOx analyzer available, mainly for US and China. Analyzers for new components available Automation systems needs an up-date 			
	 Up to 10.11.2022 unclear requirements. Which components must be tested N2O, NH3, THC, CH4 and Aldehyde? Most likely different set-ups for Light- and Heavy-Duty (FTIR) High accuracy requirement due to CF=1. New improved PEMS and mobile FTIR under development. 	ł		
EVAP	 No issues for SHED and analyzer itself. 38°C Chassis dyno preconditioning capability required ORVR (Onboard Refueling Vapor Recovery) test systems available. 			
Brake wear	 EU-7 is now a vehicle and component legislation New test and measurement systems are available Little practical experience up to now in the industry 			

Public

Testing and Measurement: New emission components

Gas component		Accepted analyzer types, as defined in GTR-15 (WLTP)									TP)				Notes
	$\left[\right]$	FTIR 🏷	NDIR	QCL	LDS	GC-ECD	PAS	Impinger	DNPH Catr.	PTR-MS	Direct GC	FID	NMC-FID	GC-FID	
N2O Nitrous oxide		✓	✓	~		~									Batch sample for GC-ECD
NH3 average conc. Ammonia		✓		~	~										 raw sample for average NH3 concentration.
NH3 mass Ammonia		✓		✓	\checkmark										 sampling method to be defined
HCHO Formaldehyde Acetaldehyde		\checkmark							~						 cont. diluted or cartridge sample
Alcohols		✓					\checkmark	\checkmark		✓	\checkmark				 only when the HC limit will be based on NMOG
NMOG		\checkmark					\checkmark	✓		~	\checkmark	~	✓	\checkmark	 NMOG = THC + Aldehydes + Alcohols - CH4
	+ (AVL	+ others											NMC FTIR NDIf QCL LDS GC-f PAS DNP PTR- Dire FID NMC GC-f	DG R ECD Inger H Cart. -MS ct GC C-FID FID	 Non-Methane Organic Gases Fourier Transform Infra-Red multi component analyzer Non-Dispersive Infra-Red analyzer Quantum Cascade Lasers analyzer Laser Diode Spectrometer Gas Chromatograph Electron-Capture Detector Photo-Acoustic analyzer Alcohol sampler with High-Pressure Liquid Chromatography (HPLC) Dinitrophenylhydrazine impregnated cartridges with Gas Chromatography Proton Transfer Reaction - Mass Spectrometry direct measuring Gas Chromatograph Flame Ionization Detector Non-Methane Cutter - Flame Ionization Detector Gas Chromatograph - Flame Ionization Detector

/ 22

AVL 💑

How to measure NH3 as mass

NH3 Analyzer

Analyzer	AVL SESAM i60FT raw and D1 for diluted	1
Accuracy	good	~
Dynamic	for raw and cont. dil. very good	~
Calibration gas	3% accepted by GTR-15, no better available	?

Raw Exhaust measurement method				
Raw modal	works well			
Requirements	Time alignment Modal raw calculation <mark>Clean sample lines</mark>	~		
Regulation	would need to accept raw modal and add the calculations			
Continuous Di	uted measurement method	\checkmark		
Contin. Diluted	works well			
Requirements	Heated transfer lines between tailpipe and CVS inlet.	~		
Regulation	already included			
Continuous Di	luted measurement method	X		
CVS Bag	Bag is not possible, due to the "sticky"	X		

Our recommendation is "Continuous Diluted"

Public

/ 23

nature of NH3

Conclusion of Part-1

EC EU-7
 • The current proposal gives us more details to improve test and measurement systems end develop new ones where needed.

Can wefor most parts yesmeasure it?PEMS RDE testing will be the most challenging task

• Using mainly RDE for emission validation is questionable
 • Lab testing is unmatched in accuracy, robustness and has the highest level of quality control (PI check). It is the backbone of any PEMS test (PEMS to Lab validation)

AVL is fully Committed to • to supply the industry with all needed test and measurement systems for Euro-7

Content

2

Review of EU7/VII Commission Proposal

• Proposal Summary • Comparison to EU6d Standard & former EU7/VII Proposals

• Implications for testing

Implications on Emission Concepts

PC/LD Segment - 1st evaluation/interpretation
 HD Segment - 1st evaluation/interpretation

Driving Profiles Focus on Statistical relevant areas required

EU7 Emission Challenges Overview

AVL 💑

AVL Interpretation - Main upcoming EU7 pollutant emission challenges						
RDE Boundaries	Emission limits	Aging Robustness	NH ₃	PN >10nm		
 Wider RDE conditions Any RDE composition allowed → e.g. highway first → high load drive-offs Emission "budget" for the first 10km 	 CO reduced to 50% NH3 introduction PN 10nm limit All Emissions limited in RDE New EVAP requirements 	 Aging and Lifetime robustness Durability up to 200.000km or 10 years 	 NH₃ produced in TWC 20mg/km limit discussed Optimization by Calibration for most cases sufficient 	 40-60% PN Tailpipe increase Limit as in EU6d ICE limitation, cold PN Optimization and high GPF efficiency needed 		
NOX = 600 mg 60 mg/km CC = 5000 mg 500 mg/km THC = 1000 mg 100 mg/km NH3C = 680 mg 68 mg/km DN = 6*E12 # 0 mg/km Limit in mg 6*E11 #/km 0 2 4 6 10 12 14 16 18 20 22 24 28 30 Distance, km 10 12 14 16 18 20 22 24 28 30	 Brake / Tyre wear CO reduced PN NH₃ (>10nm) 	Impact of lifetime Aging (example) NMOG + NOX	HB emissions of EU6d vehicles	PN10/PN23 Factor		

EU7 Emission Challenges Drive-off Scenarios

AVL 💑

AVL Interpretation - Main upcoming EU7 pollutant emission challenges

RDE Boundaries

- Wider RDE conditions
- Any RDE composition allowed
 → e.g. highway first
 → high load drive-offs
- Emission "budget" for the first 10km

/ 28

Most gasoline passenger cars below extended even in aggressive driving profiles

Focus Cycles

Main Challenges:

Inner City Delivery Low speed stop & go \rightarrow TFL

City & immediate high speed

Slow warm-up + immediate high massflow for EAS → RDE City + Highway

Cold start + high massflow

Standstill + immediate high massflow for EAS → RDE highway

Initial System Evaluation Standard Conditions **0°C**

LCV Application, 2L Diesel

Operation Profile Low load cycle (TfL) 10

> 0°C @ Standard conditions

Evaluation Matrix:

- E-Cat Voltage and Power
- > Hybridisation
- Inner-Engine heat-up
- \succ VVT cost to benefit

→ Heat-up support necessary

Emission Scenario Assumptions EURO 7/VII OBM - Challenges

AVI Interpretation Main uncoming EUZ ORM challenges							
	AVE Interpretation	- Main upcoming E	OF OBM chanenges				
Gas Sensors	PN/PM Sensors	Emission models	Legislative Definition open	Calibration and Vehicle usage			
 NO_x/NH₃: NOx Sensors existing. No new sensors will be developed. NO_x/NH₃ Cross- Sensitivity (NOx Sensor) NH3/HC Cross- Sensitivity (NH3 Sensor) Due to Sensor dewpoint, no measurement of cold start emissions Sensor Diagnosis Sensor Accuracy for low EU7 emissions. Aging? CO/HC/CH₄: Model based No Sensors existing Feasibility? 	 No suitable sensor <u>existing.</u> OBM Feasibility unclear PN/PM monitoring by models very challenging "Advanced filter diagnostics" (GPF) with current P or T Sensors not accurate enough to fulfill the Vision of OBM. 	 Realtime capable ECU models for all emissions required. Emission results must be a combination of sensor values and emission models (e.g. when sensor not ready/plausible) Sensor plausibility / drift check with models Measurement vs. Model 	 Limit definition incl. measurement / model tolerances. Averaging, driving distances, # of cycles? Data Reporting, Data transfer, Data Analysis Responsibilities (EC, OEM, Others?) OBM with PEMS tests in type approval Consequences for high emitters? TA with random malfunction 	 Model Calibration, Testing and Validation effort increases significantly (Vehicle, Virtual testbeds) <u>High xCU Software</u> <u>development effort</u> (models, sensor deviation, aging, poisoning) <u>Learning functions for</u> <u>countermeasures</u> if vehicle is close to OBM limits Alignment of: OBD <> OBM Mil on / Healing calibration Which part to replace in workshop / Repair Costs 			
Virtual sensors as part of the solution, but no Info on OBM exists							

Public

/ 32

K. Engeljehringer, C. Martin, M. Weissbaeck, M. Wieser | Webinar | 18 November 2022 |

Relevance & Readiness of Virtual sensors approach to be validated once targets are known

Public / 33

K. Engeljehringer, C. Martin, M. Weissbaeck, M. Wieser | Webinar | 18 November 2022 |

Summary 1st Review for PC/LD

Open points

- Minimum RDE distance
- Mis-use definition & consequences
- ➢ No info on OBD limits
- > No details on OBM published (species, limits, tolerances,...)
 - \rightarrow Virtual sensor approach to be prepared, but no concept proof possible (missing targets)

We stand ready for focused exchange on your specific applications

Main Challenges

- > Temperature management for low-load driving in cold conditions
 - \rightarrow E-cat or inner engine measures (VVT) or Hybridisation // or combination
- > PN_{10} limit vs. urea dosing (focus Diesel)
- \succ PN₁₀, CO and NH₃ (focus gasoline)
- Durability up to 200.000km or 10 years
- Brake Emissions

/ 34

> Timeline (considering final EU7 publication incl. Implementing Regulations

Content

Review of EU7/VII Commission Proposal

- Proposal Summary Comparison to EU6d Standard & former EU7/VII Proposals
- Implications for testing

Implications on Emission Concepts

PC/LD Segment - 1st evaluation/interpretation
 HD Segment - 1st evaluation/interpretation

EU VII Legislation HD AVL Interpretation

- Transition from Lab Testing to Road Testing
 Emission reduction down to
 - 350 mg/kWh NO_x for cold start
 - 90 mg/kWh NO_x in hot condition
- Limits for HCHO, N₂O, CH₄, PN₁₀ and NH₃ in RDE
 - Balancing of conflicting targets
- Emission compliance under all RDE conditions
 - Almost no boundaries on test conditions (ambient temperature, altitude, vehicle mileage, engine load, ...)

EURO VII proposal: Significant emission reduction of all interacting emissions

• No dedicated preconditioning

/ 36

Public

No separate weighting of cold start

AVL EU VII Demonstrator Driving Conditions

EURO VII: emission compliance under all driving conditions required.

Public _____

K. Engeljehringer, C. Martin, M. Weissbaeck, M. Wieser | Webinar | 18 November 2022 |

AVL EU VII Demonstrator Example WHTC Results

Example: WHTC cold

Technology decision after evaluation in worst case boundary and aging conditions

Public

/ 38

K. Engeljehringer, C. Martin, M. Weissbaeck, M. Wieser | Webinar | 18 November 2022 |

AVL 🗞

Euro VII Legislation HD Summary & Main Technology Elements Diesel

High efficiency engine (CO2 reduction)

• Adaptive NO_X engine out strategy

Engine

- Advanced exhaust gas temp. management
 - Multiple injection strategy
 - Uncooled & cooled EGR
 - Intake & exhaust path
 - Intake throttle
 - Exhaust back pressure valve
 - Charge air cooler bypass
 - Switchable Miller
 - Cylinder deactivation
- Holistic approach necessary to choose the right technology bricks for engine & EAS considering OBD/OBM

Aftertreatment

- Dual Stage SCR mandatory
- Vanadium SCR as main technology route due to N_2O limit
- Tailpipe filter due to urea borne particulates expected
- Electrically heated catalyst for highest emission robustness
- Model Based EAS Control

/ 39

Public

Active DPF Soot Management

AVL Technical Legislation Service – Stay Tuned

emrep@avl.com

AVL Experience Cloud <u>AVL EmRep – Emission Reports</u> <u>AVL VeLPo – Vehicle Legislation Portal</u>

Technical Legislation Services

- Central point of contact for tech. regulations
- Continuous monitoring & legal expertise
- Technical Legislation Portal & newsletter
- Tailored support for projects

Technical Legal Requirements, Codes, Rules & Standards; Certification and Approval support

Legislation Consulting

Studies & Newsletters

Homologation Support

1 Cont

Customers (external & internal)

AVL 💏

Content

3

Review of EU7/VII Commission Proposal

• Proposal Summary • Comparison to EU6d Standard & former EU7/VII Proposals

Implications for testing

Implications on Emission Concepts

PC/LD Segment - 1st evaluation/interpretation
 HD Segment - 1st evaluation/interpretation

Thank you

www.avl.com