

Reducing BEV and xHEV Development Times with Highly Efficient System Testing

Vaughan Morton, Christian Weiss and Andreas Haspl June 15, 2022 | 4:00 PM CEST

Today's Presenters

Vaughan Morton

Chief Engineering Testing, AVL

Christian Weiss

Lead Engineering Powertrain Methodology, AVL

Andreas Haspl

Senior Simulation Engineer, AVL

Testing Approach

Efficient testing

Optimization of PTCE/HTOE Testing Duration

Based on real road load profiles

AVL Powertrain Testbed

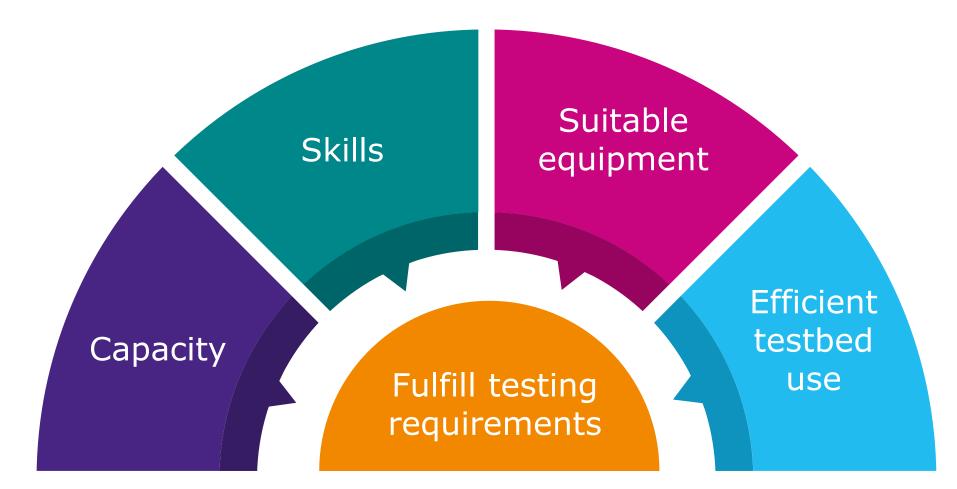
Reduce time-to-market and system robustness validation for complex powertrain systems

Efficient Testing

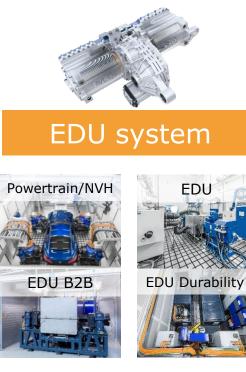
Testing AVL Approach

AVL Test Factory – A One-Stop-Shop

> 70 years experience in automotive testing

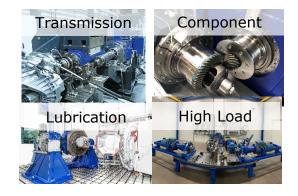

> 1,250 experienced and skilled team

> 300 testbeds of different types

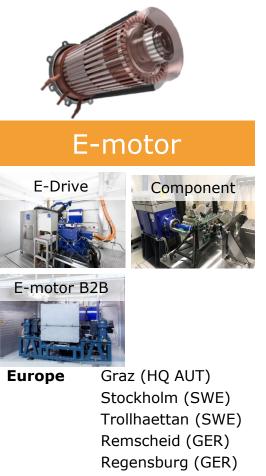

Cutting-edge measurement technologies

Best in class test management and execution systems

Building Blocks to Fulfill Project Requirments


Electrified Drivetrains – AVL Main Test Facilities

Europe	Graz (HQ AUT)	N-America	Ann Arbor (US)
	Remscheid (GER)		Lake Forest (US)
	Trollhaettan (SWE)		
	Budapest (HUN)		
Asia	Shanghai (CHN)		
	Tianjin (CHN)		
	Gurgaon (IND)		
	Kanagawa (JPN)		

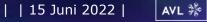

Transmission

Europe	Graz (HQ AUT)
	Remscheid (GER)
	Trollhaettan (SWE)

Capacity

Electrified Drivetrains – AVL Main Test Facilities

AsiaShanghai (CHN)N-AmericaLake Forest (US)



Power electronics

Europe Graz (HQ AUT) Regensburg (GER)

Capacity

Skills

Release

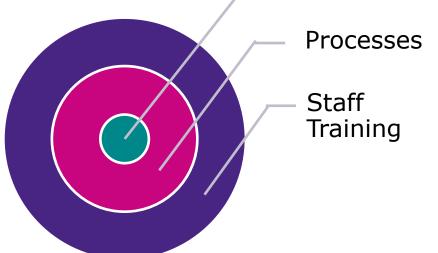
Public / 10

• Technical skill and product knowledge Safety check and management

Safety standards HV responsibilities

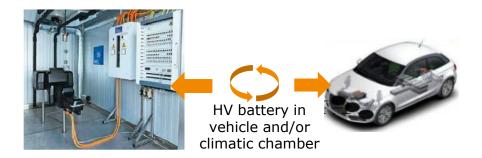
Procedural instructions

Procedural instructions


- Module based training
- HV handling (training on the job)

(HV release)

- Data handling

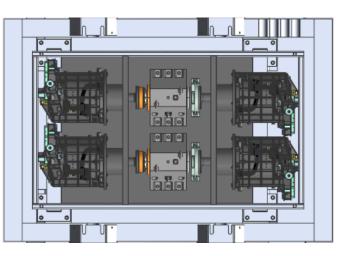

Ensure the Safety and Skills of the Employees

Capacity and Suitable Testing Environments

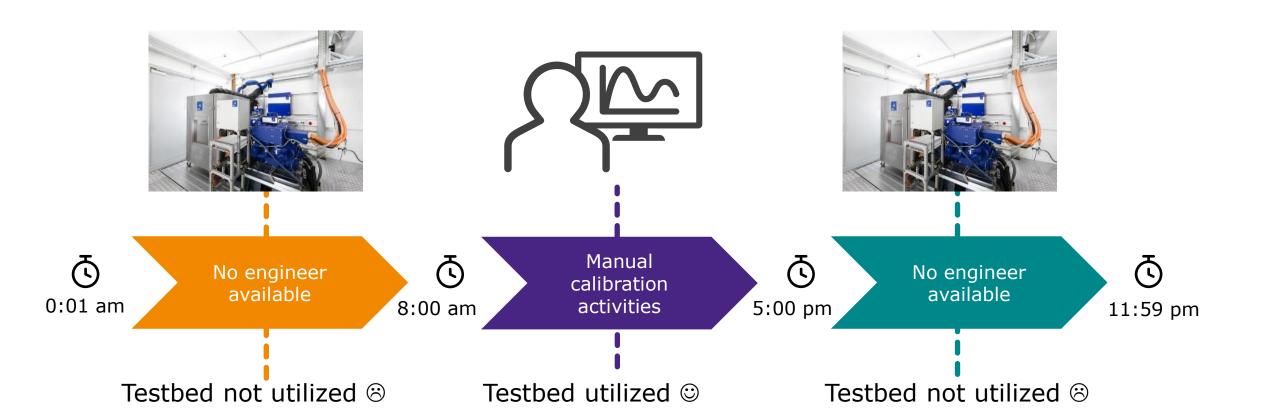
HV Powertrain TS E-Integration Four dyno configuration \rightarrow EV powertrain setup

- Development close to reality in early phases, where high voltage components are not fully available
- Automated switching between battery (in container), battery simulation and battery only possible**
- High voltage safety tests in a virtual environment
- Development in a highly reproducible testing environment

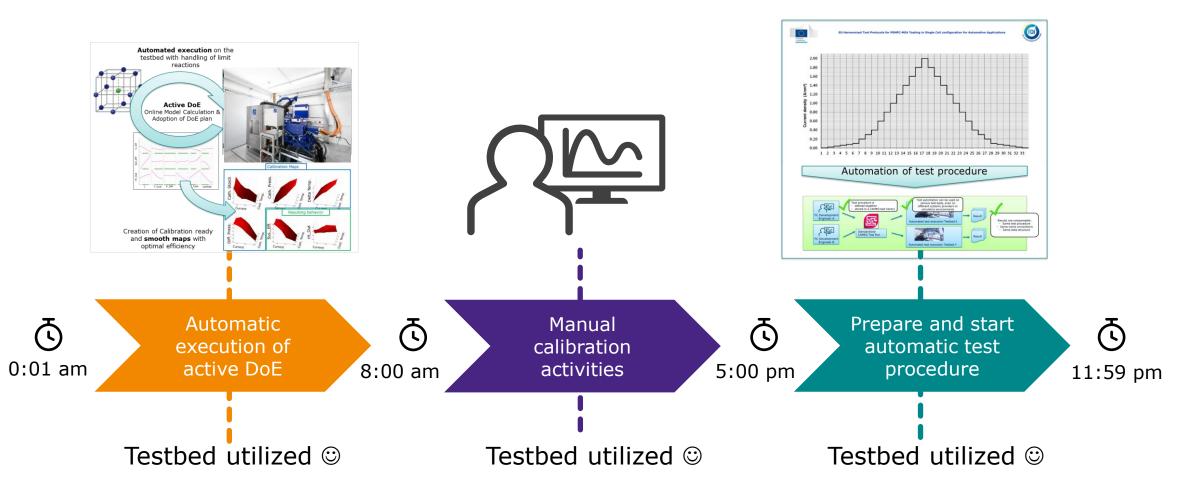
Capacity and Suitable Testing Environments



E-axle/E-motor back-to-back Thermal Endurance Testing (Standards L-02 / L-03)


E-axle vs. E-axle Alternatively: E-motor vs. E-motor

E-motor B2B


Efficient Use of the "Night Shift" Challenge

Efficient Use of the "Night Shift" Solution

Improve the Value of Testing and Development Environments Challenge

Efficient testbed use

Task: BEV / xHEV development optimisation (range, calibration, validation...)

Charging infrastructure

Robotic driver

High degree of automation DOE

Multiple vehicle variants - models

Remote testbed access

Residual bus simulation

Safety

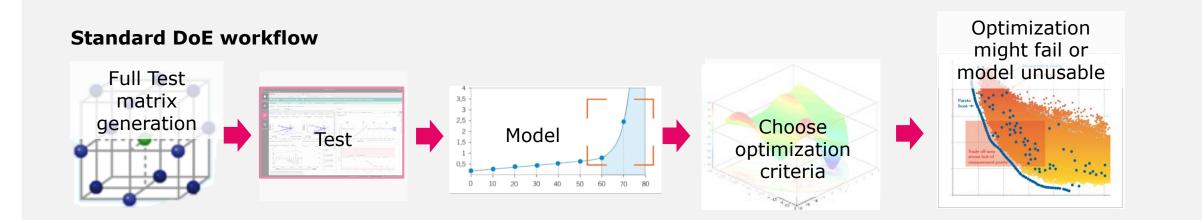
/ 15

Charging infrastructure

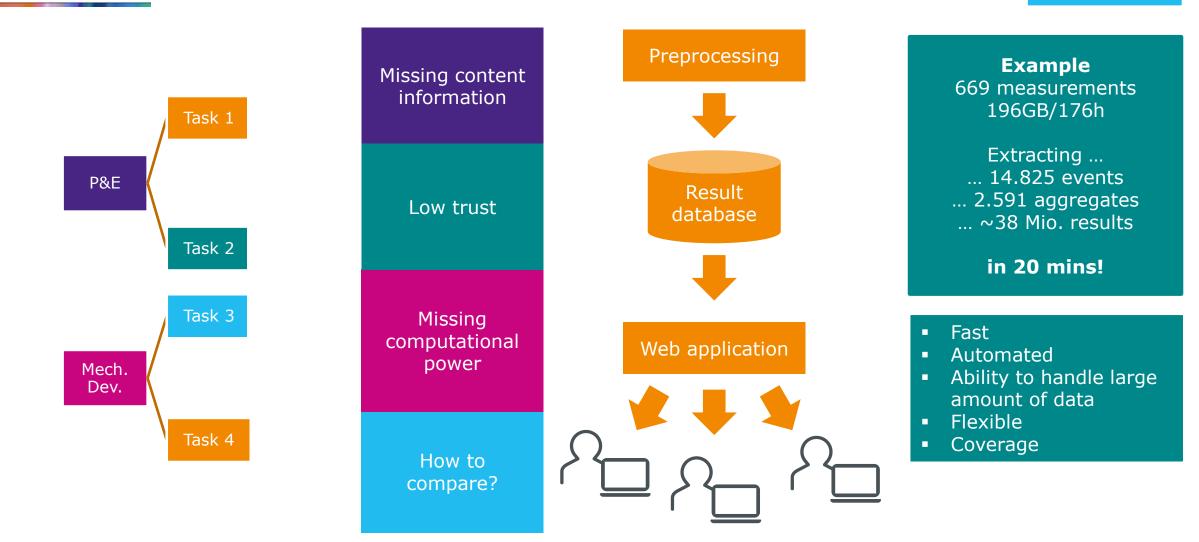
Manual calibration: ~4 weeks

 $\overline{\mathbb{O}}$

Is there a quicker way?


Is there a smarter way?

Improve the Value of Individual Tests – Solution


Traditional DoE

Test – Model – Predict – Optimize: Too late for knowledge gained after testing to improve the testing phase

However, for high numbers of input dimensions or highly non-linear systems, even standard DoE has its limits.

Smart Evaluation of Generated Test Data via "Event-driven Big Data Analytics"

Efficient

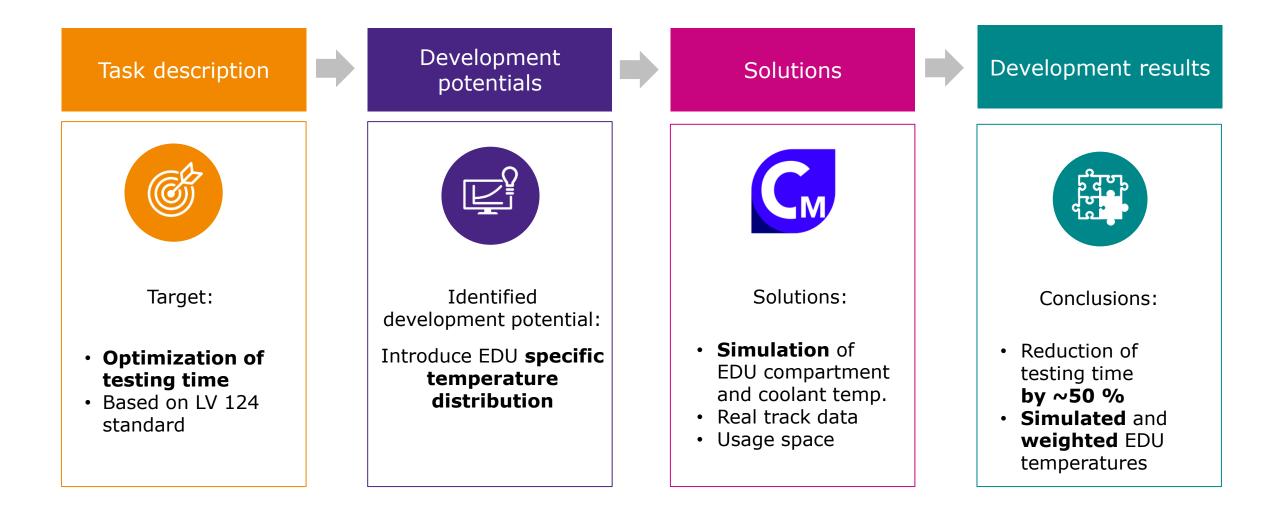
testbed use

Public

Key Topics and Takeaways

Optimize testbed efficiency, performance and safety Maximize the value of individual tests

Establish flexible testing infrastructure



Based on Real Road Load Profiles

Optimization of PTCE/HTOE Testing Duration

Optimization of PTCE/HTOE Testing Duration

LV124 L-02/L-03 Test Specification

HTOE High Temperature Operation Endurance Test

Test Target:

- Test simulates the thermal exposure of the component <u>during vehicle service life</u>.
- Intended to verify the quality and reliability of the component with respect to faults that occur due to thermal exposure such as diffusion, migration and oxidation.
- HTOE test corresponds to the L-02 test from LV124-2 corresponding to DIN EN 60068-2-2:2008-05;VDE 0468-2-2:2008-05

PTCE Powered Thermal Cycle Endurance Test

Test Target:

- Test simulates the thermomechanical exposure of the component as a result of temperature changes that occur <u>during vehicle service life</u>.
- Intended to verify the quality and reliability of the component with respect to faults that occur due to thermomechanical exposure such as aging and cracking in soldered joints, adhesive joints and welded joints, in bond connections as well as in seals or housings.
- PTCE test corresponds to the L-03 test from LV124-2, corresponding to DIN EN 60068-2-14:2010-04.

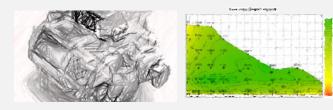
Approach according LV 124

The LV 124 standard **does not cover** the effect of external **air temperature**

No influence of specific vehicle application or market specific environmental conditions

Actual EDU temperatures from usage space are neglected

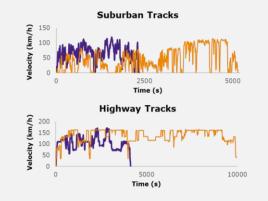
Why does this lead to a long testing time for HTOE and PTCE tests? How can the AVL approach reduce the testing time by using CRUISETM M?


Workflow with AVL CRUISETM M

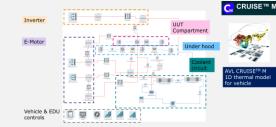
EDU components modeled in CRUISE[™] M

EDU

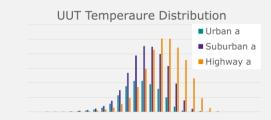
- E-motor
- Inverter
- Transmission


considering **cooling circuit** and **under-hood** flow **thermal losses** based on efficiency Maps

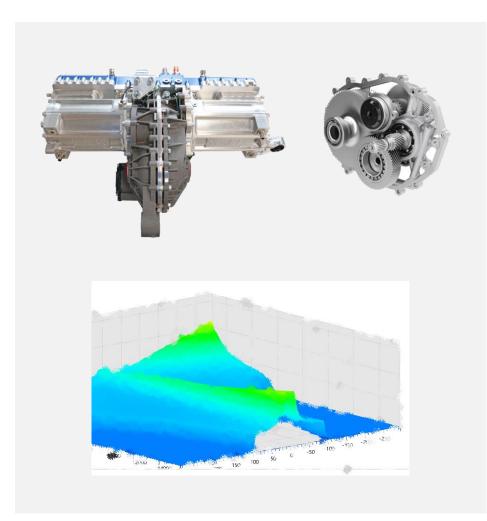
Real drive data or simulated **track data**

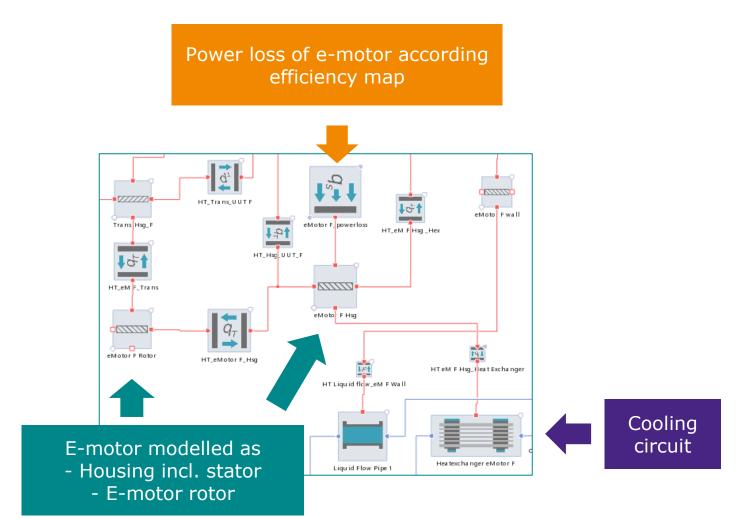

Vehicle track data as load boundary condition for EDU

- vehicle speed
- e-motor speed and torque



Combined in thermal EDU/vehicle model


Evaluation of actual losses in the EDU with **CRUISE™ M**



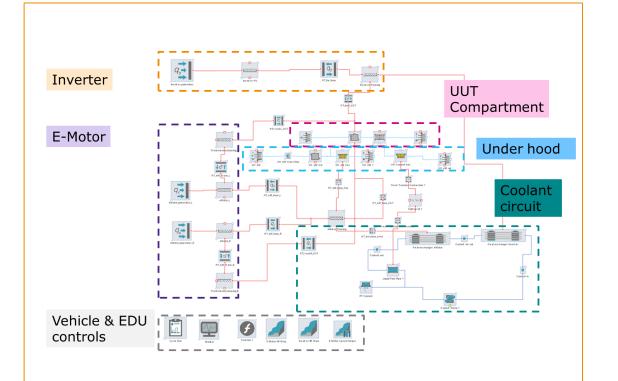
Result: thermal profiles

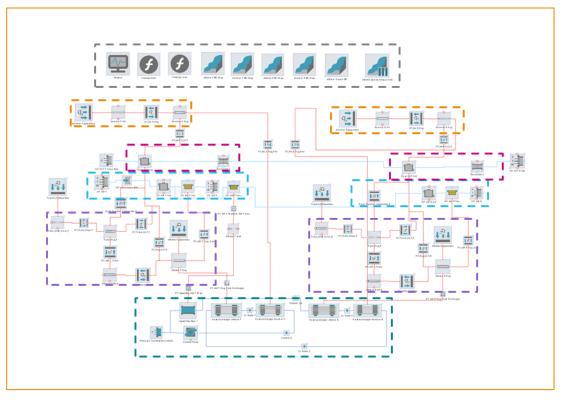
Vehicle/EDU Model in AVL CRUISETM M Example for Thermal Modelling

Road Load Profiles in AVL Smart Mobile Solutions

Example route in Detroit:

- 100km mixed route containing
- 42.0km of urban,
- 27.2km of rural and
- 29.9km of motorway track




Workflow: Vehicle/EDU Model in AVL CRUISE[™] M

Example models where the AVL approach has been applied

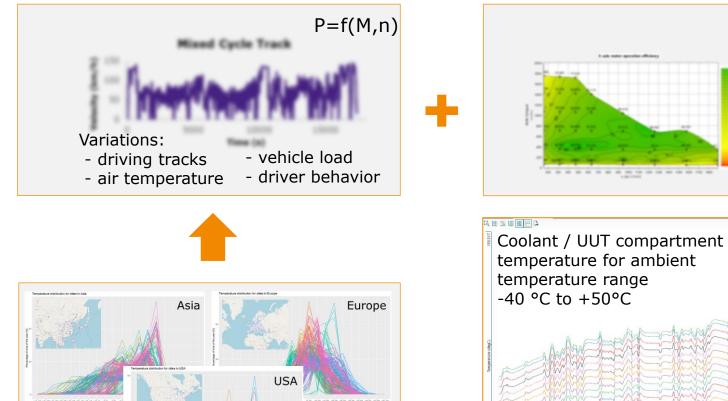
Rear e-axle with dual e-motor

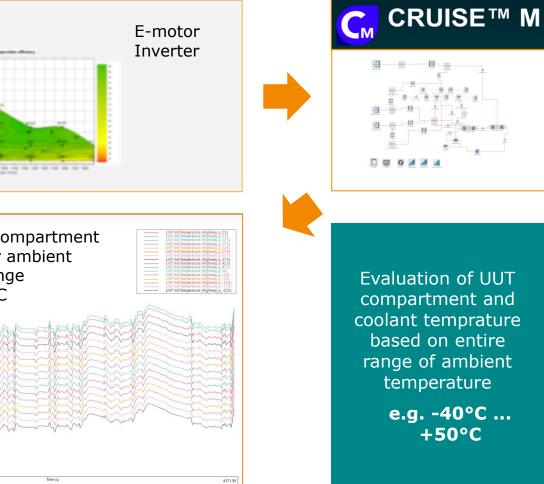
Vehicle/EDU Model – Model Setup

Variations according usage space

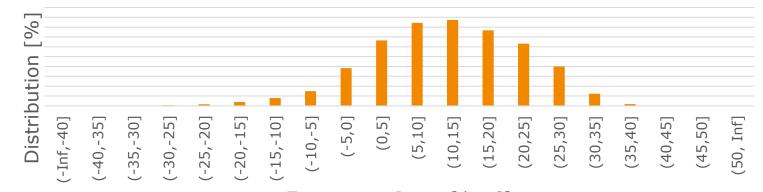
- Calculation of **several track profiles** with $CRUISE^{TM} M$
 - e.g. highway, rural, urban, sub-urban or mountain tracks
 - Simulation of entire usage space temperature range (e.g. -40°C / +50°C)
- Model variation across track profiles
 - Consideration of different vehicle loads
 e.g. curb weight +2 passengers, max towing load
 - Different **driver profiles**: aggressive, normal or peaceful driver

 Evaluation of EDU compartment and coolant temperature for all variations





Thermal Model Simulation Results



LV 124 – L-02/L-03 Market Specific Environmental Conditions

Temperature Distribution

USA - Europe - Asia

Temperature Range [deg C]

Market temperature distribution weighting e.g.

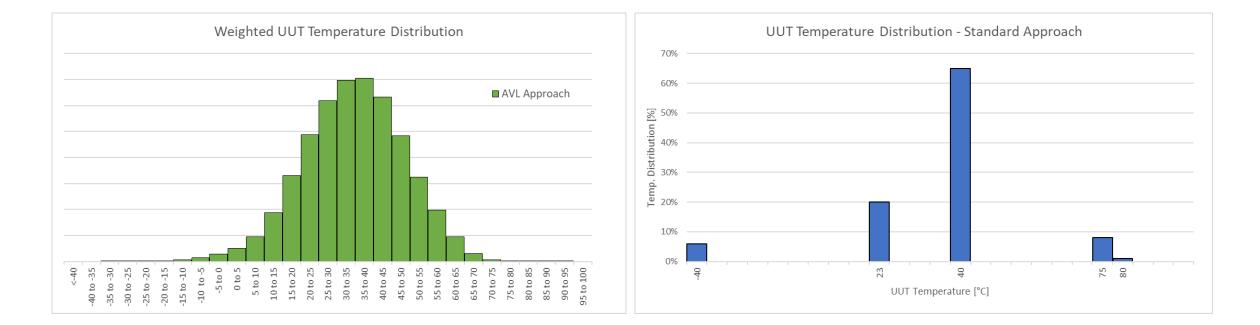
LV 124 – L-02/L-03 Temperature Weighting

Calculated Temperature Profile with CRUISE[™] M according track profile for coolant and UUT compartment

Ambient temperature distribution over the year as weighting factor

Х

Customer specific target market distribution as weighting factor corrected temperature distribution as input for standard LV 124


_

Coolant and UUT compartment temperatures weighting

Х

LV 124 – L-02/L-03 – Temperature Distribution Comparison

The temp. distribution over several tracks are weighted to achieve a realistic UUT temperature distributing based on the vehicle usage

AVL Approach

Ambient Temperature	Coolant temperature	Duration		
°C	°C	hr	-	
97.5	70	0.0		
92.5	70	0.0	ŀ	-
87.5	70	0.0	J	
82.5	70	0.3		
77.5	70	1.5		
72.5	70	6.4		
69.8	70	20.1		
69.8	65	472.5		
total te	est duration	501		

Time is < 1 min

Standard Approach

Ambient Temperature	Coolant temperature	Duration
°C	°C	hr
85.0	70	22.5
80.0	70	180.0
71.2	70	117.0
71.2	65	765.2
total te	st duration	1085

Drastic reduction of required test time from 1085h to 501h due to realistic temperature distribution

Testing time saving potential HTOE ~ 50 %

Applying weighted temp. distribution for LV 124 – L-02 HTOE calculation leads to drastic testing time reduction

LV124

Driving - Co	riving - Coolant temperature limits with derating										Driving - Coolant temperature limits with derating							
Cycles per day	Days per year	Years of designed life		Condition	T_min	T_max	∆T_test	ΔT_{field}	С	A_cm	N_test	t_equ	t_hold t	t_soak	rate_t t_cyc	mins/h	ourt_full	t_total
-	days	Years	-	-	°C	°C	°C	°C	-	-	-	min	min	min	°C/min min	min	hours	hours
2	365	10	7300	Ambient	-30	85	115	36	2.5	18.24	400	30	15	45	4 28.75		60 174	529
				Coolant	-30	70	100	36		12.86	568				103.3		60 175	
															105.5		50 179	

Drastic reduction of required test-time from 529 h to 223 h due to realistic temperature distribution

LV124 with AVL recommended Temp. Distribution

		Veen of	The survey of																	
Cycles per day	Days per year	Years of designed life	Thermal cycles in life	Condition	T_min	T_max	∆T_test	Δ T_field	C	A_cm	N_test	t_eq u	t_ho d	l t_	soak	<pre>rate_t t_cyc</pre>	mins/ r	hou t _.	_full	t_total
-	days	Years	-	-	°C	°C	°C	°C	-	-	-	min	min	m	n	°C/min min	min	h	ours	hours
2	365	10	7300	Ambient	-30	85	115	18.4	2.5	97.52	75	30) 1	15	45	4 28.75		60	26	223
				Coolant	-30	70	100	22.1		43.46	168					104.7		60	99	
																104		60	98	
		Te	sting t	ime sa	iving	ı pot	entia	I HTO	E ~	50	%					Testir potenti	-			_

Key Topics and Takeaways

Measured or simulated road profiles to create realistic usage space Temperature distribution of the EDU based on real road load profiles

Testing time reductio for HTOE/PTCE ~50 %

Reduce Time to Market and System Robustness Validation for Complex Powertrain Systems

AVL Powertrain Testbed

Top Benefits of Development on System Testbeds at AVL

SPEED

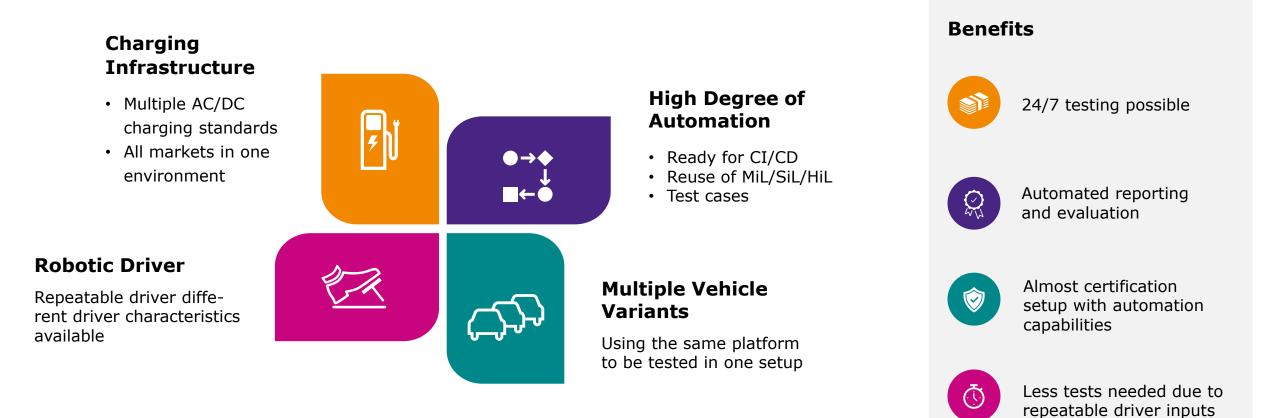
- 24/7 operation and remote operation
- Test automation and DoE
- Rapid cooling

COST

- Highly efficient prototype usage → less prototypes
- Less test trips

QUALITY AND SAFETY

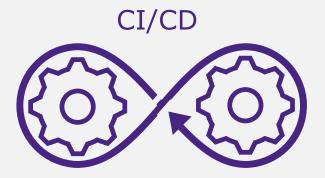
- High repeatability
- Control of all influencing parameters (climate, vehicle mass, battery condition, etc.) and their combinations
- Highest degree of test coverage

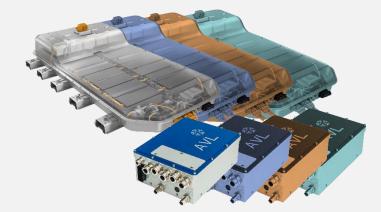

Real-Life Range Testing and Electric Range Optimization

How the real-life range testing and electric range can be optimized ...?

Real-Life BEV Range Testing

Public

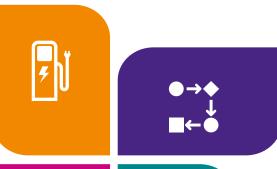

Software Regression Testing


In-field Software update verification

How shall I do my frequently required software release tests in an affordable way?

Multi sourcing verification program

We have multiple suppliers for several components. How do I make sure all combinations are working?



/ 39

Software Regression Testing

Charging Infrastructure

- Multiple AC/DC charging standards
- All markets in one environment

Variants

Robotic Driver

Repeatable driver different driver characteristics available

Benefits 24/7 testing possible **High Degree of** Automation • Ready for CI/CD • Reuse of MiL/SiL/HiL Automated reporting • Test cases $\bigotimes_{\lambda^{\prime}\lambda^{\prime}}$ and evaluation Almost certification **Multiple Vehicle** \bigcirc setup with automation capabilities Using the same platform to be tested in one setup

Less tests needed due to repeatable driver inputs

Driveability / Mode Change / Operating Strategy Optimization / Predictive Controls

" How did they get the driving performance so great? $^{\prime\prime}$

[©] Daimler AG Mercedes-AMG GT 4-Door Coupé: A class of its own Source: https://group-media.mercedes-benz.com/marsMediaSite/en/instance/ko/Mercedes-AMG-GT-4-Door-Coup-A-class-of-its-own.xhtml?oid=41351757

Driveability and Performance Calibration / Validation for Hybrid Powertrain

High Dynamic Wheel Speed Control

For high dynamic driving situations e.g. launch control, ABS braking

Optimization on System Level

- ICE, e-drive, gearbox, battery
- Up to 200 km/h

Drivability Reports

Objective evaluation of the Longitudinal accelerations by AVL-DRIVETM

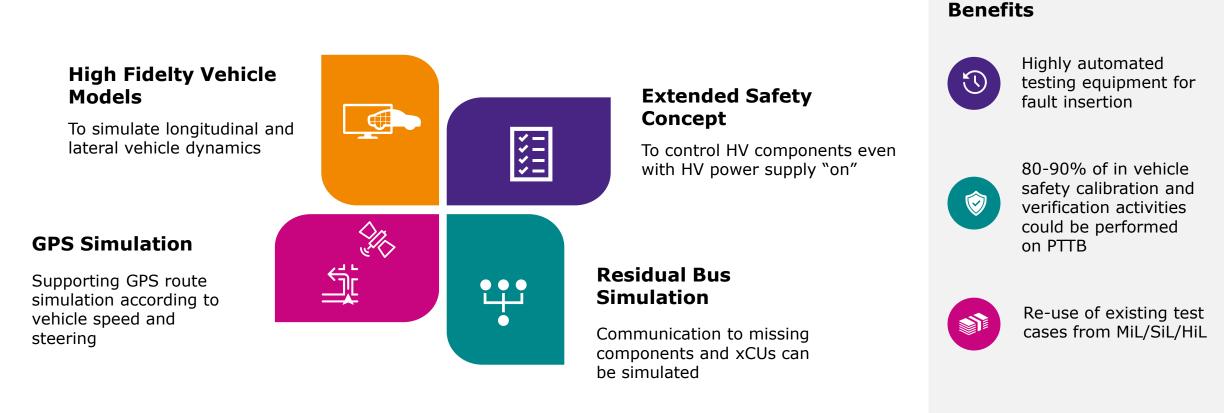
DoE

Supported test execution and parameter optimization

3 times more output compared to road testing

DoE-based System optimum

Less risk for high-speed maneuvers


Calibration and Verification of Safety Features

How can I frequently test the safety features of my high-performance vehicle in a safe manner?

Agile Development	Increasing Vehicle power	New vehicle functionalities	Electrification
Development becomes more flexible and agile, which leads to higher frequency of SW releases	High performance vehicles → high speed road testing is always critical	New vehicle architectures enhance new vehicle functionalities like torque vectoring	New and additional components to be tested

Safety functions have to work where the standard function fails ...

Calibration and Verification of Safety Features

Reduction of Test Vehicles for Test Trips

" To test all variants under all conditions I need to take all of them to the relevant locations."

Chips sold out!

" I don't get my planned test vehicles. How shall I complete my test trips? "

Non-Standard Calibration in Altitude and Climate Cell (Test Trip Alternative)

• Up to 200 km/h

Public

Up to 16 cold WLTPs

- Rapid cool down system
- 24/7 operation

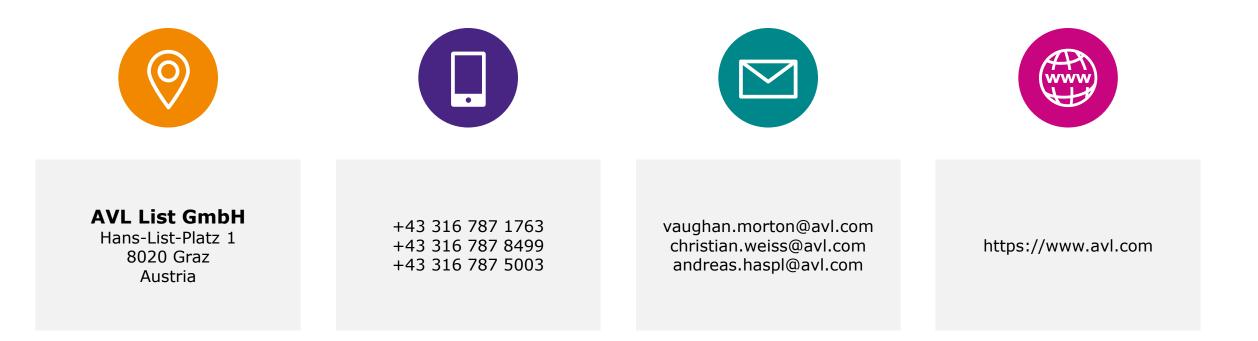
Benefits

Season independent (e.g. winter trip in August)

Controllable ambient conditions - 24/7 environment simulation including dynamic altitude simulation up to 165 m/min

Less vehicles needed for same program

Key Topics and Takeaways


Faster time-to-market with AVL system testbeds

Automated test data reporting

Safe test environment for critical driving maneuvers

Contact Information

Question & Answer

www.avl.com