

Webinar starting soon:

The Toyota Mirai II

A serious competitor to state-of-the-art BEV's?

Today's Presenter

Wolfgang Fritz

Project Manager

Background:

- >25 years experience in the automotive industry at
- AVL (since 2014)
- Magna Steyr
- Volkswagen

Clean Affordable Mobility

AVL is the world's largest independent technology partner for the development, simulation and testing of powertrain systems as well as innovative automotive solution concepts. For today and for the future.

Facts and Figures

AVL 00

Global Footprint

Represented in 26 countries

45 Affiliates divided over 93 locations

45 Global Tech and Engineering Centers (including Resident Offices)

1948

Founded

11,000

Employees Worldwide

12%

Of Turnover Invested in Inhouse R&D

70+

Years of Experience

65%

Engineers and Scientists

1,500

Granted Patents in Force

97%

Export Quota

Three Disciplines Under One Roof

ENGINEERING SERVICES

- Design and development services for all elements of ICE, HEV, BEV and FCEV powertrain systems
- System integration into vehicle, stationary or marine applications
- Supporting future technologies in areas such as ADAS and Autonomous Driving
- Technical and engineering centers around the globe

INSTRUMENTATION AND TEST SYSTEMS

- Advanced and accurate simulation and testing solutions for every aspect of the powertrain development process
- Seamless integration of the latest simulation, automation and testing technologies
- Pushing key tasks to the start of development

ADVANCED SIMULATION TECHNOLOGIES

- We are a proven partner in delivering efficiency gains with the help of virtualization
- Simulation solutions for all phases of the powertrain and vehicle development process
- High-definition insights into the behavior and interactions of components, systems and entire vehicles

AVL VEHICLE ENGINEERING

Complete Development Solutions

With our comprehensive technological know-how in all vehicle systems and functions, and our many years of experience in the implementation and use of virtual development methods, we can help you manage complexity and find certainty in challenging times.

- Development, engineering, services and products
- Vehicle and vehicle systems
- Vehicle functions
- Vehicle development targets and attributes

Today's Agenda

1

AVL's FC Benchmarking Program and Competence

5

The benchmark report

2 Fuel Cell Basics

- **3** About the Vehicle
- 4 Insights into the benchmark study

Introduction AVLs Vehicle, System & Component Benchmarking Program

From vehicle to subcomponent analysis involving all expert fields of AVL

AVL Vehicle, System and Component Benchmarking Facilities

	HQ Graz, AUT	Regensburg, GER	Tianjin <mark>& Shangh</mark> ai, CHN Vanc	couver, Can ada Zalaege	rszeg & Kecskemet, Hungary
Vehicle Benchmark					
E-Drive Benchmark					
FC Benchmark	E.				
E/E Benchmark					
 In place Vehicle Test-Track 					Jose .

Vehicle, System and Component Benchmarking Program

Reports available:

- Chevrolet Bolt
- Tesla Model X P100DL
- Tesla Model 3 LR
- Nio ES8
- Hyundai Kona EV
- Jaguar I-PACE
- Hyundai Nexo (FC & Battery)
- Audi e-tron quattro 55
- Porsche Taycan Turbo S
- VW ID.3
- Tesla Model Y
- Polestar 2
- Mercedes EQC
- Hyundai Sonata

Currently in Progress:

- Hyundai Ioniq 5 AWD
- VW ID.4 GTX
- Audi e-tron S
- BMW iX xDrive50

Planned:

(start depending on vehicle launch)

- Mercedes EQS
- Tesla Model S Plaid
- Lucid Air Dream Edition
- NIO ET7

Benchmark of **3-4** xEV / year on system and comp. level

Benchmark of >30 vehicles/ year on vehicle level

AVL Fuel Cell Vehicle Benchmarking History

2016/17 Toyota Mirai 1

- 339 pages report
- >2.300 pictures
- Bottom up cost calculations

/ 11

2019 Hyundai Nexo

- 584 pages report
- >4.200 pictures
- Bottom up cost calculations

2021 Toyota Mirai 2

- >400 pages report (estimated)
- >1.800 pictures
- Bottom up cost calculations

AVL Fuel Cell Global Footprint

- H₂ & fuel cell development since 2002
- About 500 engineers in engineering, testing & simulation
- Three H₂ & Fuel Cell Tech-Centers
 - Graz, AT
 - Vancouver, CA
 - Kecskemet, HU
- Local fuel cell support in UK, JP, CN, US & BR

Hydrogen & Fuel Cell Test & Development Center - Graz / Austria

AVL Fuel Cell Canada - Vancouver / Canada

Stack Test and Prototype Lab - Vancouver / Canada

AVL Fuel Cell Competence Highlights

Improving Durability and Reliability

AVL is the industry leader in the development and validation of PEMFC, SOFC and SOEC systems. Thanks to our technical expertise – from stacks to the complete FC system – and our leading test solutions, we are the preferred partner for OEMs and suppliers when it comes to future CO_2 neutral propulsion and power generation.

Development and Integration

- Cell and stack design for PEMFC
- Modular fuel cell system development and integration for PEM and SOC technology
- Functional safety management
- FCCU software development
- From concept to SOP

Testing and Validation

- Modular and flexible solution, easy scalability and upgradability
- Suitable for many infrastructures, from container to building
- Highest and most precise measuring performance
- Large SW portfolio applicable for fuel cell testing

Simulation Tools and Services

- Fuel cell system layout
- 3D cell and stack models
- BoP component sizing
- Fuel cell system virtual calibration

AVL's FC Benchmarking Program and Competence

5

The benchmark report

2 Fuel Cell Basics

3 About the Vehicle

Fuel cell Basics – the PEM fuel cell

- 60-120 °C
- Proton transmitting membrane as electrolyte
- Fuel: H₂
- $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O_2$
- Up to 500kW
- Humidification on the anode
 - Backdiffusion of water
 - External humidification
- Very good dynamic response
- CO-tolerance: ≤ 100ppm

Fuel Cell Basics – the vehicle components

Public

Today's Agenda

AVL's FC Benchmarking Program and Competence

5

The benchmark report

2 Fuel Cell Basics

3 About the Vehicle

Insights into the benchmark study

Official data Vehicle data Toyota Mirai II Fuel Cell 134kW 2021

		Official			
		omeidi			
	Total system output	134 kW			
	Max. power (E-Motor)	128 kW			
	Max. torque	300 Nm			
Data	Motortype	Permanent magnet synchronous motor			
<u>e</u>	Acceleration	9.0 s			
hic	Top Speed	175 km/h			
Ve	Driving range	650 km			
	CO2 combined (g/km)	0			
	Drag coefficient	0.29			
	Curb Weight	1900-1950 kg			
	Overall Fuel tank capacity	142,2l (5.6kg H2 @ 70MPa)			
Z	Power output battery (V)	310,8 V			
tte	Battery type	Lithium-ion			
Ba	Cooling battery	air			
	Battery Capacity	1.24 kWh			

Pic 18-1: Toyota Mirai II

		Official
	Power output fuel cell stack	128 kW
e	Efficiency fuel cell (%)	XX
	Stack density (kW/l)	5,4
Ĩ	Number of cells	334
	Fuel Cell type	Polymer electrolyte
	Cooling fuel cell stack	liquid

About the Vehicle Vehicle Dimensions, Space & Roominess

Today's Agenda

AVL's FC Benchmarking Program and Competence

5

The benchmark report

2 Fuel Cell Basics

3 About the Vehicle

4 Insights into the benchmark study

Global Vehicle Benchmarking Executive Results and standing of 2020 Toyota Mirai 2

					Star	nding							Standing
		Mirai 2	Mirai 1	Hyundai Nexo	Below average	A verage C ompetitive	Leading			Mirai 2	Mirai 1	Hyundai Nexo	Below average A verage C ompetitive Leading
Рег	formance							Ene	rgy consumption & Range				
€_3	0 to 100kph [s]	9.2	9.6	8.7			•		Fuel concumption W/LTC		NN		
_	Elasticities: 40 – 70 [kph] 60 – 100 [kph]	2.5 4.7	2.98 5.98	2.4 4.8					[kg/100km]	0.63	NEDC: 0.8	0.99	•
	max. Acceleration level [m/s ²]	4.4	4.1	4.25					Fuel consumption RDE [kg/100km]	0.85 (moderate driving)	NN	1.02 (moderate driving)	$\mathbf{\bullet}$
	Top speed [kph]	175	178	179		Ø			Road load: A ₀ [N]	170	133.3	151.7	
	Curb weight [kg]	1900	1850	1874	Ó				B ₀ [N/kph] C ₀ [N/kph ²]	0.73 0.026	0 0.03	0.32 0.033	
													_
Dri	veability DR AVL-DRIVE F	Rating						Toto	riar Sound Quality				
200	Drive away [DR]	8.3	7.6	7.3	•	•			Interior sound quality at l	Full load ac	coloration		
5-1	Acceleration [DR]	7.9	7.2	6.9) 🥠)		Interior sound quality at I	Part load ac	coloration		
	Deceleration [DR]	7.5	6.3	6.6		$\mathbf{i} \mathbf{i}$			Interior sound quality at r	ant load ac	conditions		
	Tip in [DR]	8.0	8.2	8.1		ð,							
	Tip out [DR]	9.0	8.3	8.3									

Performance

Testing conditions on test track:

- Test weight (curb weight plus instrumentation and driver)
- Dry surface
- Fully warmed-up vehicle

/ 22

• Driving mode: most sporty mode: with and without brake torque start

Test items:

- Acceleration performance from standstill in different SOC levels
 - = 0 20 kph
 - 0 40 kph
 - = 0 80 kph
 - 0 100 kph
- Elasticities:
 - = 40 70 kph
 - 60 100 kph
 - = 80 120 kph
- Max. initial acceleration level [m/s²]
- Acceleration characteristic over speed

Performance - Full load from standstill 0 to 100 kph – Mode comparison

Public

/ 23

2020 Toyota Mirai 2 Sport 14.5 kg/kW 1966 kg RWD Selector lever: D	Measured by AVL	OEM spec
1.44s 2.78s 4.41s 6.6s	9.39s	9.0s
2020 Toyota Mirai 2 Normal 14.5 kg/kW 1966 kg RWD Selector lever: D		
1.46s 2.81s 4.42s 6.57s	9.34s	
<mark>2016 Toyota Mirai</mark> 16.2 kg/kW 1850 kg FWD Selector lever: D _	Measured by AVL	OEM spec
1.38s 2.76s 4.52s 6.95s	10.21s	9.6s
2019 Hyundai Nexo 15.2 kg/kW 1821 kg FWD Selector lever: D		
1.28s 2.49s 3.93s 5.95s	<mark>8.71s</mark>	
Legend		
0-20kph 0-40kph 0-60kph 0-80kph 0-	100kph	

Normal & Sport: low acceleration performance compared to vehicle class and OEM expectation Slow acceleration build up during fuel cell startup due to low capacity HV battery (1.2kWh) supplying insufficient power to achieve maximum motor performance

Performance - Full load from standstill 0 to 100 kph and max. initial acceleration

The full load acceleration is improved from Mirai 1 to Mirai 2 but significantly behind what luxury BEV vehicles can provide

/ 24

СУГФ

Drive Away – Standing start Detail – Pedal vs. ax-gradient and ax. bump

AVL-DRIVE Report Generator V4.5.0

The driving comfort is excellent

Vehicle Energy Efficiency & Consumption

Test	Environment
Real-world driving	Public road
WLTC	Chassis dyno
Constant Speed	Test track

Test items:

Analysis of vehicles energy efficiency in standardized cycles (e.g. WLTC) and Real-World Driving cycle (Standard AVL RDE cycle in Graz)

- Electric energy management
- Energy flow and loss analysis
- Electric Energy consumption of auxiliaries
- Regenerative braking and recuperation capabilities
- Operating strategy: Power output vs. vehicle speed and HV battery SOC

Testing conditions:

- Test weight (curb weight plus instrumentation and driver)
- Driving mode: start-up mode (Normal or Comfort)
- 23°C at test start

Energy Management, Efficiency & Consumption Real-World driving cycle AVL Graz

Real world driving, referring to Real Driving Emissions (RDE) legislation with equal distance split for city, interstate and highway drive. Consumption determined by subsequent re-charge. The H_2 consumption of the fuel cell stack is calculated by followed equation, based on the stack current.

Energy Management/Efficiency/Consumption Range & Consumption

The equivalent energy consumption (in kWh/100km) of FCEV, compared to BEV's, results in generally higher consumption values. This is caused by the hydrogen - electric power conversion.

Cycle		H ₂ cons [kg/10	umption 00km]	Range Estimation** [km]			
	WLTC OEM	WLTC	RDE normal	RDE sport/ dynamic	WLTC	RDE normal	RDE sport/ dynamic
Toyota Mirai II	0.8	0.63	0.85	0.78	871	646	704
Hyundai Nexo	1.0	0.99	1.02	1.12	626	608	554

* For FCEV: calculated H2 energy → Hu=33.33 kW/kg (Source "www.Linde-gas.at")

** For FCEV: The WLTC range estimation is based on full H_2 -tank capacity of 6.33kg (full) with remaining 2% H_{2-} level.

(-)

ぐス

Â

ത്

Ŝ

____չիշ

Insights into the benchmarking study Cooling and derating

Heat rejection at different vehicle speeds

Public

/ 29

Test Description: Constant speed driving (road grade 0%) - 160kph - 177kph (vmax) Ambient temperature: 23°C

- Verhicle speed is limited to 177km/h
- Vehicle can run v_{max} continously for long time
- No reduction of speed due to heat; temperature stays in acceptable range
- Vehicle runs v_{max} without support from battery only from fuel cell power

Note: in other test case (Townes Pass at 40°C ambient temp.) we could observe derating and speed reduction and surprisingly high temperatures

Insights into the benchmarking study stack power

Stack Power @ vehicle Stack Power @ testbed 20211004 AV91002 max Power 150kW.mf4 Max_Power_23deg_25082022.dat ∇ ∇Z Full Load more speeds 23ded 26 CommisioningTest_10082021.dat ∇ ∇T Mirai_Comissioning_AllSignals.dat Towing 23deg 25082021.dat ∇Z ∇ WLTC 26082021.dat ∇Z const drive 23deg 25082021.dat ∇ LA coastdown.dat Constant speed 100_60_30_full load02.mf4 Constant speed FL 160 130 100.mf4 ∇Z V PWR [kW] Stack [kW] Abs V ∇ I_HV_Stack [A] Abs Current [A]

• Power of (124±6) kW reached.

/ 30

- Multiple vehicle measurements included to reflect the range of reached powers during various vehicle tests.
- Maximum reached stack power: 150 kW
- To reach 150 kW in the vehicle, 26% higher air mass flow and 30% higher air pressure needed.

È

Fx-Ox Cross Pressure Sensitivity – Negative Cross Pressure FxIn - OxIn

Observation and Interpretation:

 Very low cell-to-cell voltage variation (standard deviation of 1 mV; Note: measurement accuracy ±1 mV)

- Excellent production quality
- Very good distribution of the gases
- Very good quality of coating

Insights into the benchmarking study

Effect of Relative Humidity at 350 A:

Balanced $RH_{Fx} = RH_{Ox}$, 3 mins/pt, dT = 10 °C, T_coolt_in= 55°C

Observation and Interpretation:

- The cell row is very insensitive to relative humidity at 55°C
- The cell row is able to maintain similar performance even at low relative humidity (i.e. 25 %RH at 55 ° C)
- Slightly negative trend in ACV with increasing relative humidity
- Hysteresis is shown between decreasing (violet) and increasing (black) relative humidity, with better performance for the former.

=> <u>This insensitivity to %RH is a very</u> <u>impressive result!</u>

Unit cell - general observations and plate coating analysis

- The unit cell is comprised of a MEFA and two plates
- Seal is present only on the coolant side of the cathode plate

Plate coating analysis

Titanium in the plates substrate can cause degradation of the fuel cell membrane therefore a coating is applied to the plates.

Legend:

MEFA – Membrane Electrode Frame Assembly

SEM – Scanning Electron Microscope FIB – Focused Ion Beam

Reduction in Electrode Pt Loading

Yoshizumi, T., Kubo, H., and Okumura, M., "Development of High-Performance FC Stack for the New MIRAI," SAE Technical Paper 2021-01-0740, 2021, doi:10.4271/2021-01-0740.

Public

Summary vehicle performance

pro

- 650 km range even in real world driving
- Refuelling time ~ 5 min
- Driving comfort
- Competetive price

contra

- Full load acceleration
- Space and seating comfort

Due to a lot of improvements in every detail Toyota succeeded in creating a competetive electric car with a driving range of 650km which can be bought for \sim 60.000 Euro

Today's Agenda

5

The benchmark report

Fuel Cell Basics

3 About the Vehicle

Insights into the benchmark study

Outlook on AVLs full benchmark study of the Mirai 2 Vehicle Benchmarking

Objective assessment of **driving excitement** and evaluation of vehicle **energy efficiency**.

Outlook on AVLs full benchmark study of the Mirai 2 FC Benchmarking

Stack and cell benchmark database

Stack tear-down and engineering judgement by FC development experts to highlight strengths and potentials for improvements.

Linking functional requirements to design and production costs.

Public

Report Structure

Next vehicles in the program:

Mercedes EQS Tesla Model S Plaid Lucid Air NIO ET7

Benchmark online platform: https://app.avl.com/benchmarkingprogram

To find out more: Visit us at our AVL Benchmark Centers!

Wolfgang Fritz Project Leader Wolfgang.Fritz@avl.com +43 316 787 3027

Toyota Mirai 2

Q&A

Thank you

www.avl.com