

EU7 – Herausforderungen und potenzielle Lösungsansätze für die Antriebsstrangentwicklung EU7 general Overview

Potential Challenges and derived Solutions

AVL TechDay Deutschland 25.5.2023 in Leimen

Christian MARTIN Senior Product Manager Passenger Car Powertrain Systems, Gasoline Engines

Euro 7 Legislation

Euro 7 monitoring – stay tuned

The proposal is just the beginning... **AVL Technical Legislation Services** guides you through the regulative process to come:

?* Timing Correlations derived from past experiences (e.g. EU6 introduction)

Parallel development of related UN Regulations and UN GTRs

Euro 6d & 6e and Euro 7 Implementation Passenger Cars

¹Proposed Euro 7 would repeal Euro 6e

²based on Presidency partial compromise text, 15.03.2023. Council Working Party on Technical Harmonisation – Motor Vehicles, Meeting 22.03.2023

³Double testing under certain conditions

/ 4

** WLTP based targets will be defined based on 2020 NEDC CO_2 values.

WLTP based targets will have comparable stringency to NEDC based 95 g/km.

Status according to Regulation (EU) 2017/1151, (EU) 2017/1154, (EU) 2017/1347, (EU) 2018/1832 and (EU) 2023/443

Ambient = increased extended ambient conditions for RDE compliance

AES flag = indicator for active AES

UF d_{neb} = updated utility factor based on d_{neb} = 2,200 km

UF d_{nec} = updated utility factor based on d_{nec} = 4,260 km

Driving Profiles Focus on Statistical relevant areas required

Euro-7 Challenge **Mastering Complexity**

RDE boundary conditions

EU-6d extended

-15-10 -5 0 5 10 15 20 25 >

/ 6

Emax

"Wide open road" testing

3

Infinitive combinations of variables. Impossible to physically test all. Challenging limits and new pollutants limited Simulation: Tests per shift **SIL** Simulation 6000 easier Parallelization, faster than real time) Various powertrains and fuel types **HIL Simulation** 12 ⊡ @ 4 Laboratory: July 2027 Engine testing 8 24/7 Powertrain testing 8 CF = 1,43 / 1,5 = Chassis Dynamometer with 2 RDE cycles and full

environmental conditioning

2

of climate

2

conditions

Wider range or and a litude or and a litude or a litud

1800

1600

<u>E</u> 1400

600

SiL Application Proven in SOP Projects

Public

| EU7 Overview | 25 Mai 2023 | 🛛 🗛 👫

Effect of SiL in SOP 2022 Hybrid Program Use Case - Example

SiL saves Hybrid-Program SOP:

 Increased calibration speed
 Increased testing capacitiy
 Digital backoffice support
 ~130.000km Chassis Dyno testing executed on SiL (~4800 Emission Cycles)
 40% reduction of real vehicle Chassis Dyno testing

Public

EU7 Emission Challenges Overview

 RDE Boundaries Wider RDE conditions Any RDE composition allowed CO reduced to 50% NH3 introduction PN 10nm limit 	AVL Interpretation - Main upcoming EU7 pollutant emission challenges					
 Wider RDE conditions Any RDE composition allowed CO reduced to 50% NH3 introduction PN 10nm limit 	Aging Robustness	NH ₃	PN >10nm			
 A e.g. highway first A high load drive-offs Emission "budget" for the first 10km All Emissions limited in RDE New EVAP requirements Brake / Tyre wear CO reduced MH₃ (>100 mg/mg) 	 Aging and Lifetime robustness Durability up to 200.000km or 10 years 	 NH₃ produced in TWC 20mg/km limit discussed Optimization by Calibration for most cases sufficient 	 40-60% PN Tailpipe increase Limit as in EU6d ICE limitation, cold PN Optimization and high GPF efficiency needed 			

AVL 💑

Public

EU7 Emission Challenges Drive-off Scenarios (Examples)

Power Limit for first 2km. Any trip composition allowed \rightarrow "highway first"?

/ 10

AVL 🗞

EU7 Emission Challenges Drive-off Scenarios

AVL Interpretation - Main upcoming EU7 pollutant emission challenges

RDE Boundaries

- Wider RDE conditions
- Any RDE composition allowed
 → e.g. highway first
 → high load drive-offs
- Emission "budget" for the first 10km

Gasoline vehicle partially in Extended Conditions! First drive-off up to 160kph has significant emission impact!

Exhaust Gas Aftertreatment System Gasoline Configuration Overview EU7

 Less costly technology required than initially expected, however irrational timeline and missing boundaries

Actual EU7 Technology Approaches (03/2023) de-contented versus 2020 Assumptions , however, calibration, validation and OBD /OBM effort significantly enhanced vs. EU6d

Exhaust Gas Aftertreatment System Gasoline Configuration Overview EU7

Exhaust aftertreatment examples to be discussed in detail dependent on powertrain/vehicle concept, engine out emissions performance and final emission legislation definition

> Status 03/2023

All solutions will be most likely combined with measures like torque limitation or hybrid support especially at drive off.

Public

Technological EURO 7 requirements - Summary Gasoline Passenger Cars

Solution elements:

- > **CO** → RDE relevant → Full map Lambda = 1 engine and/or maximum Power Limit
- > NH3 \rightarrow Calibration Optimization and highly accurate Lambda control in most cases sufficient
- PN>10nm /GPF → ICE limitation, cold PN Optimization, >95% GPF efficiency needed (new & regenerated GPF)
- ➤ THC/NMHC (PN) → Capable ICE hardware (combustion chamber, injectors, piston, charge motion...), calibration and drive-off strategy optimization required especially for T<0°C</p>
- Full massflow capable exhaust aftertreatment volume
- > Catalytic Coatings and engine operation with lowest possible influence on lifetime aging
- > **ICE Power/Torque/Speed limitation** to fulfill emissions
- Hybrid Support for cold-drive-off (if applicable)
- > Secondary air and/or EHC as efficient measure to reduce cold start emissions (if applicable)
- > **OBM:** NOx/NH3 Sensor required, ECU capable Emission models / virtual sensors required (AVL expectation)

Initial EU7 System Evaluation **Diesel LCV** - Standard Conditions **0°C**

→ Heat-up support necessary

| EU7 Overview | 25 Mai 2023 | 🛛 🗛 🐇

Technological EU7 requirements - Summary Diesel Passenger Cars and Light Commercial N1/M1

Solution elements:

- **NH3:** Dual SCR Calibration Optimization and NH3-UI >98% in all conditions
- **NMHC/THC/CO:** Support of EHC during EAS heat up and keep warm, no active rich combustion for LNT operation
- PN: DPF regeneration optimization → always keep a residual Soot layer, adapting the ufSCR dosing to reduce the Urea based PN10
- ICE Power/Torque/Speed limitation to fulfill emissions
 - Hybrid Support for cold-drive-off if applicable
- Aftertreatment:
 - Catalytic Coatings and engine operation with lowest possible influence on lifetime aging
 → Dual SCR Dosing with specific SCR coatings (CU and CU&Fe) and "rightsized" SCR volumes
 - **EHC** as efficient measure to reduce cold start emissions and maximize the heat up potential
- **OBM:** NOx/NH3 Sensor required, ECU capable Emission models / virtual sensors required (AVL expectation)

Euro 7/VII Main OBD | OBM Challenges

OBD (On Board Diagnostic)

= detecting malfunctioning systems which lead to emission exceedances in order to facilitate repairs

New system monitors required

- Component based failure detection
- Determination of root causes by detected OBM violations
- New engine / EAS components and sensors

-

OBM (On Board Monitoring)

= detection of emissions above the emission limits due to malfunctions, increased degradation or other situations that increase emissions (incl. multiple partial degradation)

New requirements!!

- Detection of TP emissions above ETL
- Emission compliance and calibration robustness under all conditions
- TP emissions need to be far below ETL/OBM threshold limit to cover all aging effects, RDE influence factors, etc.
- Reporting of OBM information to the authorities

OBM will require calibration frontloading to VTB/HiL environment, new software development and significant increase of validation!

OBD development efforts will further increase!

Not part of type approval, but to be declared!

OBM for EU7 Challenges

AVL Interpretation - Main upcoming EU7 OBM challenges					
Gas Sensors	PN/PM Sensors	Emission models	Calibration and Vehicle usage	Legislative Definition open	
 NOx Sensors existing. <u>No new sensors will be</u> <u>developed.</u> NO_x/NH₃ Cross- Sensitivity (NOx Sensor) NH3/HC Cross- Sensitivity (NH3 Sensor) Cold start emission measurement only with 	 No suitable sensor existing. OBM Feasibility unclear PN/PM monitoring by models very challenging "Advanced filter diagnostics" (GPF) with current P or T Sensors not accurate enough to fulfill the Vision of OBM. 	 <u>Realtime capable ECU</u> <u>models for all emissions</u> <u>required.</u> Emission results must be a <u>combination of sensor</u> <u>values and emission</u> <u>models</u> (e.g. when sensor not ready/plausible) Sensor plausibility / drift 	 Model Calibration, Testing and Validation effort increases significantly (Vehicle, Virtual testbeds) <u>High xCU Software</u> <u>development effort</u> (models, sensor deviation, aging, poisoning) <u>Learning functions for</u> countermeasures if vehicle 	 Limit definition incl. measurement / model tolerances. Averaging, driving distances, # of cycles? Data Reporting, Data transfer, Data Analysis Type approval procedure (OBM PEMS Test,) Responsibilities (EC, OEM, Others?) Consequences for high emitters? 	
preheated sensor Sensor Diagnosis Sensor Accuracy for lov EU7 emissions. Aging CO/HC/CH4: No Sensors		check with models Measurement vs. Model UTB : 0.70 [g] ETB : 0.78 [g] Deviation: -10.54 %	 is close to OBM limits Alignment of: OBD <> OBM Mil on / Healing calibration Which part to replace in workshop / Repair Costs 		

600 900 1200 1500 1800 recorder_time [s]

Picture Source: Vitesco Technologies w No Sensors ٠ existing

Public

EU7 Emission Development **OBM – Summary**

Introduction with EU7 07/2025, no stepwise OBM introduction

 \rightarrow Introduction date to be decided by parliament & council (no comment on the timing by commission...)

- OBM will be introduced with EU7 with the goal to identify "high emitters"
- NOx/NH3 sensor is required
- Emission models, so called "virtual sensors" are required for all emissions
 - to crosscheck with sensor results (plausibility, adaptions)
 - cover cold start conditions (sensor not ready)
 - Repair pinpointing
 - Aging adaptions (sensors, EAS,..)
- PM Sensor not expected due to Sensor availability and accuracy
 - No PM Sensor existing \rightarrow OBM with PM models only with higher tolerances
 - Discussed alternative: ISC RDE testing (in the laboratory) to check PM, without OBM?
- OBM Data transfer
 - During vehicle operation 1Hz data on OBD-Port
 - After vehicle operation (key-off) OBM data storage in vehicle and data transfer OTA
- S/W development for storing/handling/analyzing OBM data, EEDWS activation, inducement and repair pinpointing as one of the key challenges (lead time!)
- Significantly increased development, validation and testing effort expected in SOP calibration projects

Thank you

www.avl.com