

Umsetzung der Euro-7 Anforderungen im Bereich der "portablen Emissions Messtechnik" (PEMS)

Kurzvorstellung:

Zuständigkeitsbereich:

- Portable Abgasmesstechnik "PEMS"
- Partikelmesstechnik PKW / LKW / NRMM
- Brake Wear Emissions
- Partikelmesstechnik Aviation

Michael KRÜGER Senior Technical Sales Specialist

AVL Deutschland GmbH Mainz Kastel michael.krueger@avl.com

Agenda

- EU 7 PEMS Messtechnik Anforderung Vergleich EU6 zum EU7 Vorschlag
- Umsetzung der EU7 Anforderungen am Beispiel der AVL PEMS Messtechnik
- Integration von neuen Komponenten (NH₃,HC,NMHC,PN₁₀), Erweiterung vorhandener PEMS Systeme
- 4 Zusammenfassung

EU7 RDE – Anforderung & Einflussfaktoren

Light Duty

Heavy Duty

Anforderungen Commission

	Construction of the second of	The anti-control of the second and t
Einführungsdatum	07/ 2025	07/ 2027
Neue Limits	Nur für Diesel (-25% NO _x)	Limits "Cold- and Hot Test" (Reduktion bei NOx und PN ₁₀)
Neue Emissionskomponenten	$\mathrm{NH_3}$, THC, NMHC, $\mathrm{PN_{10}}$	NH ₃ , NMOG, N2O, HCHO, PM, PN ₁₀
"Conformity Factor" 1 (NO _x /PN ₁₀)	✓	✓
"Erweiterung der Ext. Boundary Conditions"	✓	✓
Kraftstoffneutralität	✓	✓
	Low High	Low High

Kunden

♥ Zeitdruck		
Komplexität		
? Fahrzeug-RDE-Anforderung / Schadsto	offe —————	
Test-/Prüfaufwände		
Auswirkungen der PEMS-Unsicherheite	en ————	

Auswirkungen auf PEMS Systeme

Komplettes Portfolio Weiterverwendbarkeit/ aktualisieren/erweitern/ Neuanschaffung

System- und Geräteunsicherheit im Einklang mit Grenzwerten und Kundenerwartungen

Tools / Expertise zur Verbesserung der Testeffizienz

Qualität / TCO-Reduktion

EU7 Vorschlag und dessen Auswirkung (am Beispiel LDV)

Diskussion bzgl. Bias Driving "normales Fahren" & externe Einflüsse?

- Einfluss Extended Bedingung auf die Emissionen
 - 1x Extended Bedingung = **Emission/1.6** (Höhe/Wärme/Kälte/Anhängerbetrieb)
 - 2x Extended Bedingung = Daten werden komplett exkludiert

Neue Analysatoren für NH₃ / THC / NMHC / PN₁₀ für die RDE Messung

Basis-Analysatoren Anforderung vergleichbar zu EU6e (z.B. NOx Drift,...)

 Nötige Absicherungstest für alle Kraftstoffe, für welche die Typgenehmigung erteilt wird, Konformitätserklärung für alle Kraftstoffe, alle Nutzlasten und alle Fahrzeugtypen

Public

Abgas-OBM Sensorik mit Onlineerfassung & Statusmeldung an den Fahrer

| AVL Emission Techday | 2023

EU7 Vorschlag und dessen Auswirkung (am Beispiel LDV)

Verschärfung des NOx Limits für Diesel Fahrzeuge von 80 -> 60 mg/km

Partikelanzahl 6*10¹¹ von Cut-Point 23nm -> 10nm

CO Limit von 1000/500mg/km (Otto/Diesel) -> auf 500mg/km (Otto/Diesel)

THC/NMHC 68/100mg/km (Otto) -> 68/100mg/km mobile Messung (Otto/Diesel)

Neues Limit NH₃ 20mg/km (Otto/Diesel) mobile PEMS Messung

Trailer-Betrieb bei der Messung "Extended Conditions"

Erweiterung der Prüfbedingung

" " Extended/Standard " -7/0°C -> -10/ 0°C

"Standard/Extended" 30/35°C -> 35/45°C

"Standard/Extended " 700/1300m -> 700/1800m

RDE Streckendistanz von min. 16km pro Phase -> Short Trips <10km (Emission Budget)

- Vmax. für RDE Fahrt 145km/h (+15km/h kurz) -> 145-160 km/h "Ext. Conditions"
- Fahrdynamik Einschränkung Kaltstart ersten 2 km über 20% (WP) entspricht "Extended Conditions"

EU7 Anforderungen Messtechnik Vorschlag 06.05.2023

Analysatoren-Freigabe > EU7 Vorschlag

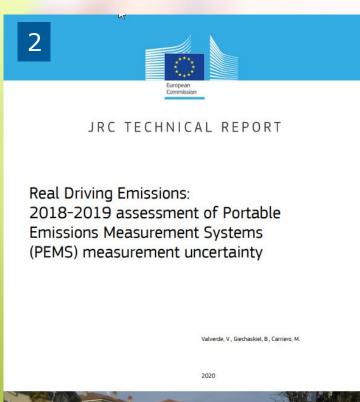
Komponenten	Standard Analysatoren
CO and CO ₂	NDIR, LAS , FTIR
THC (wet)	FID
CH ₄	FID-NMC, GC-FID, LAS, FTIR
NOx, NO	CLA, NDUV, LAS, FTIR
NO ₂	NDUV, LAS, FTIR, PAS
N ₂ O	NDIR, LAS, FTIR
H ₂	Field MS (mass spectrometry)
H ₂ O (wet)	NDIR, LAS, FTIR
NH ₃ (wet)	LAS, FTIR
Formaldehyde (wet)	LAS, FTIR

Einsatz alternative Analysatoren möglich!

Beweis der Vergleichbarkeit!

Public / 7 | AVL Emission Techday | 2023

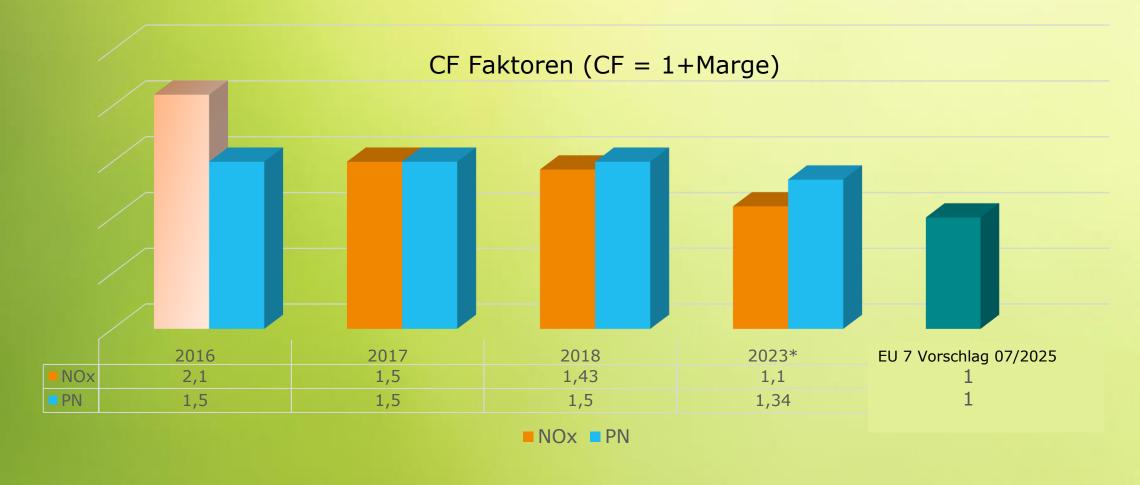
CF-Faktor-Vorschläge basieren auf JRC-Aktivitäten und -Berichten



JRC TECHNICAL REPORTS

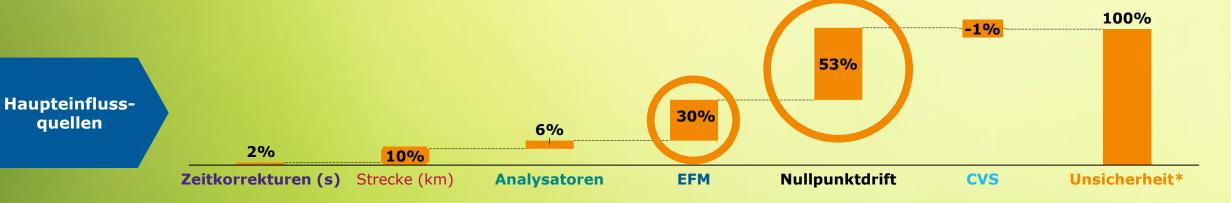
Real driving emissions: 2017 assessment of Portable Emissions Measurement Systems (PEMS) measurement uncertainty

2018



Giechaskiel B., Valverde V., Clairotte M.

"Conformity Factors (CF)" seit Einführung EU RDE PKW



* EURO 6e ... RDE5 ... 1.9.2023

AVL 🐉

Public / 9 | AVL Emission Techday | 2023

PEMS-Unsicherheit – am Beispiel gasförmig Komponenten

Einflussfaktoren

kann

quellen

Geräte

Kalibrierung

Installation/ Betrieb

Geräte im Feld

Data Evaluation

Wartung

- hierbei Analysatoren unterstützen
 - Probengasaufbereitung Temperaturstabilisierung
- ISO 17025/ CEN Reaktionszeitprüfung an
- der QS-Station

Kalibrierung/Lin. Checks

- Kompetente Unterstützung vorort
- SC Workflow-/SW Prozessunterstützung

Start-up-Timer

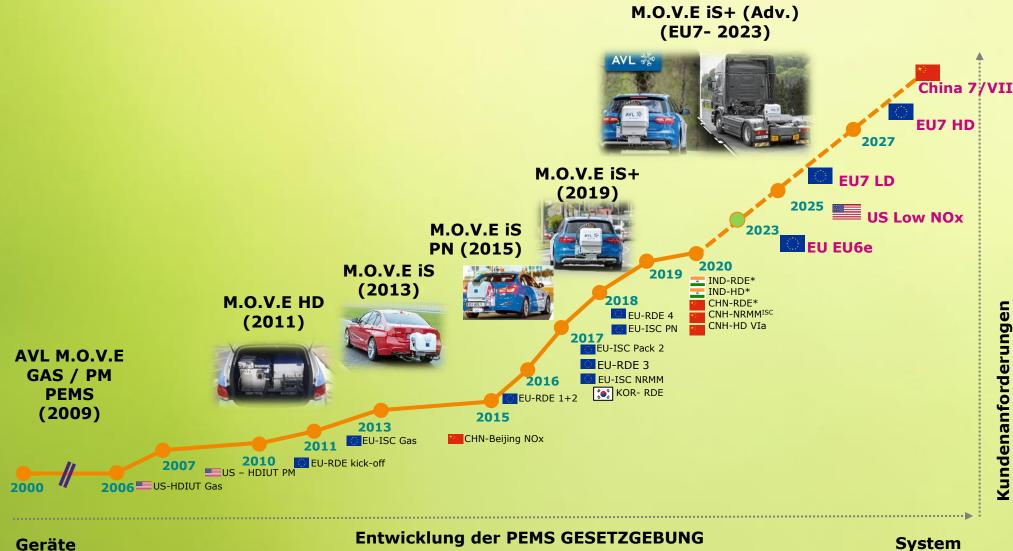
- Expertensupport
- Applikationssupport
- AVL Maintenance Manager
- Ersatzteilversorgung via AVL EShop - eSpares

- Automatische -Zeitkorrektur
- Datenauswertung gem. RDE-Gesetzgebung

- ISO 17025
- Wartung & Kalibrierung im Werk oder vorort

Quelle: JRC Technical Report, Real Driving Emissions (RDE): Bewertung der Messunsicherheit mobiler Emissionsmesssysteme (PEMS) im Jahr 2020

Public | AVL Emission Techday | 2023| / 10


Verlauf & Einführung gesetzlicher PEMS Messung

New Regulations

AVL 💑

CRC führt bereits im Jahre 1956, in Los Angeles die erste Emissionsstudie für Straßenfahrzeuge durch."

Public / 11 | AVL Emission Techday | 2023|

Wie kann AVL auf dem Weg zur Erfüllung der gesetzlichen Anforderungen unterstützen?

Globaler "RDE" Support

- Modulares Konzept
- Erweiterungen/Alternativen/Optionen verfügbar, um alle Fahrzeuganwendungen & weltweite RDE-Vorschriften für Typprüfung, Forschung und Entwicklung abzudecken

Zukunftssicherheit

- Verbesserung der Standardtechnologie
- Neue Technologien, um mehr als 20 Komponenten gleichzeitig zu detektieren
- Elektrische Energiemessung für Reichweitentest
- Weites Einsatzspektrum (Temperatur, Höhe, ...)

Wirtschaftlichkeit

- Weiterverwendung/Erweiterung bestehender M.O.V.E iS+
- Maßgeschneiderte Lösungen und individuelle auf Bedürfnisse angestimmt

"effizient"

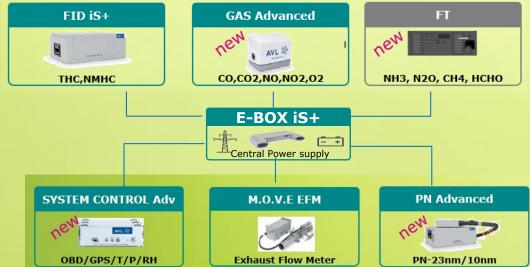
- Geführter und automatisierter Testablauf
- Automatisierte Datenauswertung und Reporterstellung
- Automatisierter RDE-Testprozess

"gesetzeskonform"

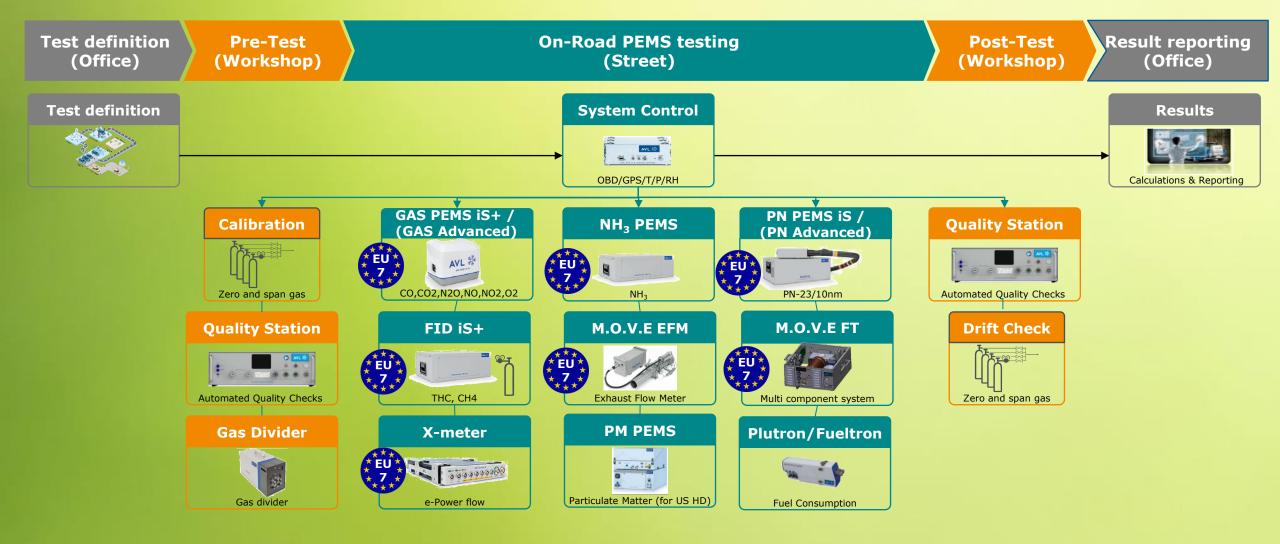
- Alle bekannten Gesetzesformeln in MDT implementiert
- Zertifiziertes Werkzeug gemäß den gesetzlichen Anforderungen

AVL 🐉

• Vorbereitet für das Data Management nach ISO 17025 & CEN


Public / 12 | AVL Emission Techday | 2023|

Anpassung der Energieversorgung



AVL M.O.V.E - EURO 6 → EURO 7

AVL M.O.V.E iS+ Euro 7 System Übersicht

AVL M.O.V.E iS+ Euro 7 PKW Höchste Flexibilität für Ihre individuellen Testanforderungen

PEMS System Übersicht

EU6e & EU7 ready

EU7
Variante 1

EU7 Variante 2

Erforderliche / empfohlene Messsysteme

Alternative Messsysteme

AVL M.O.V.E Applikation - Light Duty

EU7 basierend auf EU6e (mit Erweiterungen)

Weiterverwendungsmöglichkeit

Aktuelle M.O.V.E iS+ Geräte konform zu den EU7 Vorschläge

- Von der JRC bewertete Unsicherheit von PEMS
- Verfügbare Geräte:

Gas PEMS iS+ FID iS+

PN PEMS iS

System Control (Win 10)

Auxiliaries

Software Updates

Concerto MDT **EU7 Evaluations**

System Control Software

- NH₃ PEMS Integration
- X Meter Integration
- Testing Workflow akt. EU7 Vorschlag

Erweiterung / Upgrades

PN PEMS LD +

- Selectable 10/23nm
- EPC+ upgrade von existierenden PN PEMS Geräten

- elektrische Reichweite, Haltbarkeit der Batterie
- **NEUE KOMPONENTEN / ANALYSATOREN**

System Control Advanced

IT security OPTIONAL

GAS PEMS Advanced

- Low NOx
- OPTIONAL

Public | AVL Emission Techday | 2023 / 17

HEAVY DUTY PEMS TESTING Mit erprobter AVL M.O.V.E iS+ Technologie

AVL M.O.V.E iS+ Euro 7 Heavy Duty Höchste Flexibilität für Ihre individuellen Testanforderungen PEMS Systemübersicht

EUVI & EU7 ready

EU7 Variante 1

EU7 Variante 2

AVL M.O.V.E Solution – Heavy Duty strenge Anforderungen

AVL 💑

A Weiterverwendungsmöglichkeit

Aktuelle M.O.V.E iS+ Geräte, die konform sind (geringes Risiko)

Verfügbare Geräte:

FID iS+

EFM

System Control (Win 10)

Auxiliaries

B Software Updates

• EU7 HD Evaluations

System Control Software

- M.O.V.E FT Integration
- Testing Workflow acc. EU7

C Erweiterung / Upgrades

PN PEMS HD +

- Selectable 10/23nm
- EPC+ Upgrade von existierenden PN PEMS Geräten

PM PEMS IX

 EU7 Anforderungen noch nicht definiert

D NEU

M.O.V.E. FT NH₃, N2O, HCHO; Alkohole, Aldehyde (NMOG)

GAS PEMS AdvancedLowest NOx

System Control Advanced

- IT security
- Optional

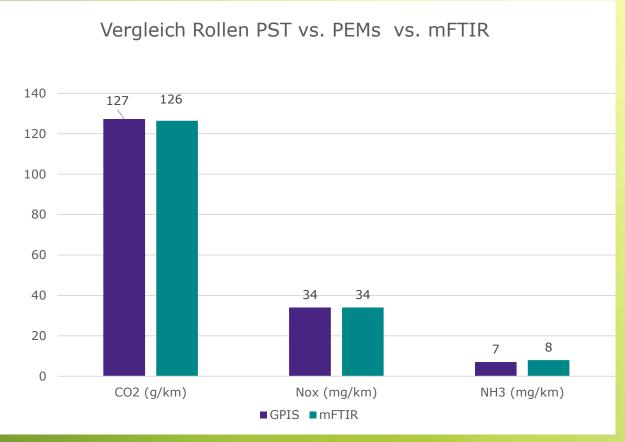
OBM Sensor Applikation PKW & LKW

Supporting tools Pre-Test On-Road PEMS testing Post-Test Result reporting **SYSTEM CONTROL Results** (SC Advanced) € 556 .6 Particle emissions: System controller Calculations & Reporting Gaseous emissions: PN PEMS iS E-BOX iS+ **Drift Check** (alt. PN Advanced) FID iS+ $\overline{}$ Central Power supply PN-23nm / 10nm Zero and span gas THC, NMHC M.O.V.E EFM FT **Exhaust Flow Meter Ambient/Vehicle** NO, NO₂, CO, CO₂, NH₃ (up to 20 pollutants) 17-05

Public / 21 | AVL Emission Techday | 2023

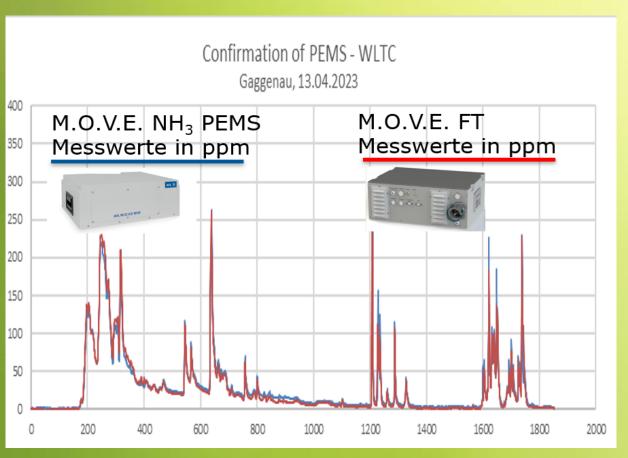
GPS / T, p, H,/ OBD-II, CAN

Details zur neuen Analytik im Bereich der mobilen Messtechnik AVL M.O.V.E. NH₃ PEMS Modul (Erweiterung)


- **EU7 Vorschlag:** Analysatoren erlaubt: TDLAS o. LAS(QCL) o. FTIR
- **NH₃ Messung:** Verwendet einer hochempfindlichen TDLAS Technologie (Tunable Diode Laser Technologie), höchste Genauigkeit über den gesamten Messbereich
- **Voll integriert in AVL M.O.V.E ab Release 19.1**
- **Präzise NH₃-Messung** innerhalb eines breiten Umgebungsbetriebsbereiches EU7 Vorschlag (-10 bis 45°C /Höhe 1800m)
- Messküvetten-/Betriebstemperaturen >170°C, um eine Kondensation von chemischen Nebenprodukten zu vermeiden
- **Sehr geringer Kalibrieraufwand** im Vergleich zu konventioneller Technik NDIR/NDUV/CLD!
- Kostengünstige LDS Technologie zur Erweiterung (Light Duty EU7 - NH₃ Detektion)
- Zeitlauflösung/Messsignal 10 Hertz

Verfügbarkeit ab Q4/2023

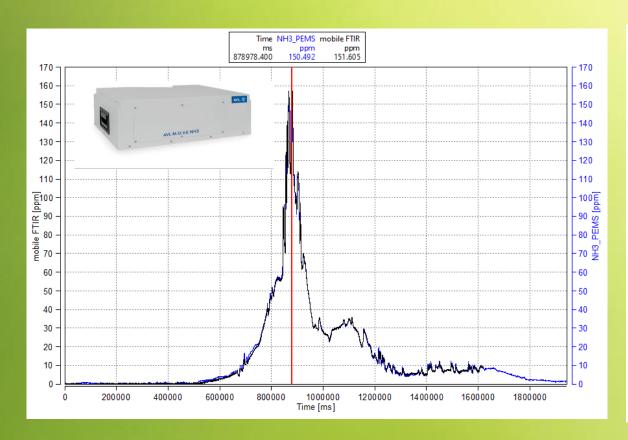
TECHNICAL DETAILS	
Measurement principle	Tunable Diode Laser (TDLAS)
Measurement value	NH3 (ppm)
Measurment range	0 – 1,500 ppm
Ambient operating range	-10°C to +45°C; 700 to 1,050 hPa (~ 0 – 3000 m)
Operating voltage	22 to 28.8 VDC
Accuracy	≤ +- 1.5ppm or 2% of rdg.
Zero drift	≤ 2ppm/ 4hrs.
Weight/Dimensions (WxHxD)	~ 17.5 kg/ ~ 490 × 180 × 330 mm

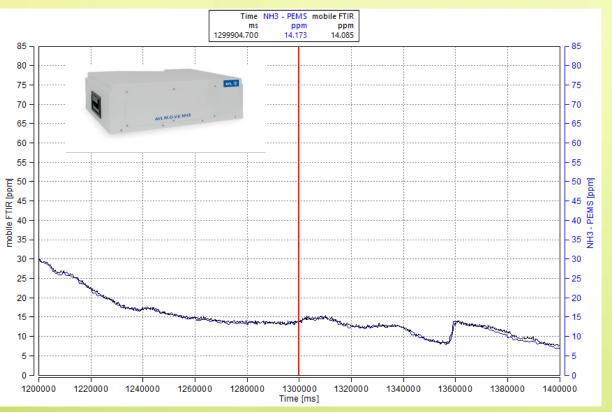

- **EU7 Vorschlag:** Analysatoren erlaubt: TDLAS o. LAS(QCL) o. FTIR
- NH₃ Messung: Verwendet einer hochempfindlichen TDLAS Technologie (Tunable Diode Laser Technologie), höchste Genauigkeit über den gesamten Messbereich
- **Voll integriert in AVL M.O.V.E ab Release 19.1**
- **Präzise NH₃-Messung** innerhalb eines breiten Umgebungsbetriebsbereiches EU7 Vorschlag (-10 bis 45°C /Höhe 1800m)
- Messküvetten-/Betriebstemperaturen >170°C, um eine Kondensation von chemischen Nebenprodukten zu vermeiden
- **Sehr geringer Kalibrieraufwand** im Vergleich zu konventioneller Technik NDIR/NDUV/CLD!
- Kostengünstige LDS Technologie zur Erweiterung (Light Duty EU7 - NH₃ Detektion)
- Zeitlauflösung/Messsignal 10 Hertz

Verfügbarkeit ab Q4/2023

- **EU7 Vorschlag:** Analysatoren erlaubt: TDLAS o. LAS(QCL) o. FTIR
- **NH₃ Messung:** Verwendet einer hochempfindlichen TDLAS Technologie (Tunable Diode Laser Technologie), höchste Genauigkeit über den gesamten Messbereich
- **Voll integriert in AVL M.O.V.E ab Release 19.1**
- **Präzise NH₃-Messung** innerhalb eines breiten Umgebungsbetriebsbereiches EU7 Vorschlag (-10 bis 45°C /Höhe 1800m)
- Messküvetten-/Betriebstemperaturen >170°C, um eine Kondensation von chemischen Nebenprodukten zu vermeiden
- **Sehr geringer Kalibrieraufwand** im Vergleich zu konventioneller Technik NDIR/NDUV/CLD!
- Kostengünstige LDS Technologie zur Erweiterung (Light Duty EU7 - NH₃ Detektion)
- Zeitlauflösung/Messsignal 10 Hertz

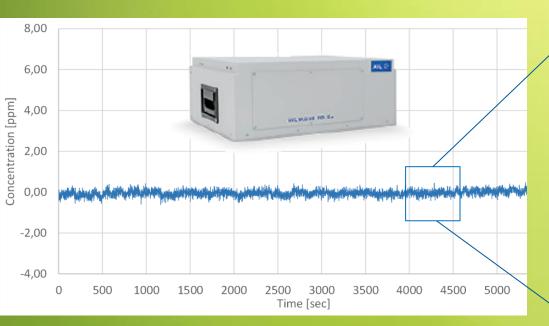
Verfügbarkeit ab Q4/2023


- **EU7 Vorschlag:** Analysatoren erlaubt: TDLAS o. LAS(QCL) o. FTIR
- NH₃ Messung: Verwendet einer hochempfindlichen TDLAS Technologie (Tunable Diode Laser Technologie), höchste Genauigkeit über den gesamten Messbereich
- **Voll integriert in AVL M.O.V.E ab Release 19.1**
- **Präzise NH₃-Messung** innerhalb eines breiten Umgebungsbetriebsbereiches EU7 Vorschlag (-10 bis 45°C /Höhe 1800m)
- Messküvetten-/Betriebstemperaturen >170°C, um eine Kondensation von chemischen Nebenprodukten zu vermeiden
- **Sehr geringer Kalibrieraufwand** im Vergleich zu konventioneller Technik NDIR/NDUV/CLD!
- Kostengünstige LDS Technologie zur Erweiterung (Light Duty EU7 - NH₃ Detektion)
- Zeitlauflösung/Messsignal 10 Hertz


Verfügbarkeit ab Q4/2023

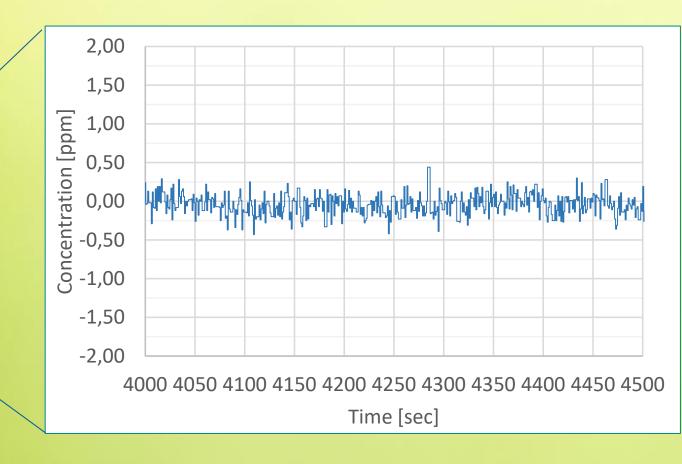
NH₃ PEMS – Ergebnis des Korrelationstests

AVL NH₃ **PEMS vs Mobile FTIR** (3rd party)



NH₃-PEMS zeigen ein ähnliches dynamisches Verhalten und eine ähnliche Genauigkeit wie FTIR

AVL 💑


NH₃ PEMS – Korrelationstest geringes Rauschen & hohe Nullpunktstabilität

Teil eines WLTC-Tests auf dem Rollenprüfstand mit einem 2-Liter-Benzin Motor

Public

/ 28

AVL Emission Techday | 2023

Details zur neuen Analytik im Bereich der mobilen Messtechnik AVL M.O.V.E. FT Modul (Erweiterung)

AVL 💑

| AVL Emission Techday | 2023

AVL M.O.V.E. FT

- FTIR/Mehrkomponenten-**Emissionsmesssystem**
- Kompakt und leicht (18kg)
- Alternative zur GAS PEMS für Kunden, die neue Analysatoren Technologie akzeptieren
- Messung aller relevanten Gaskomponenten innerhalb eines Systems
- **Variantenpakete:**
 - Standardsetup HD $(N_2O, HCHO, NH_3, CH_4, H_2O)$
 - Erweiterungspaket 1 (CO/CO₂/NO/NO₂/NO_X)
 - Erweiterungspaket 2 (THC_{FTIR äquivalent,}......)
- Reduzierter Aufwand bzgl. Kalibrierung (Zero)
- Kein flüssiger Stickstoff erforderlich
- Probennahme Fluss 5/min.
- Integriert in die AVL System Control (WIN10) oder "Standalonebetrieb"

Verfügbar Ende 2023

TECHNICAL DETAILS

General Specification

General Specification		
Dimensions (W x D x H)	49.5 x 36 x 18.9 cm (~19 x 14 x 7")	
Weight	18 kg (~40 lbs)	
Power supply	22 – 28 VDC, max 20A, ~150 W after warm-up @ 20 °C	
Ambient temperature	-10 – +45 °C (14 – 113 °F)	
Ambient pressure	800 – 1,100 hPa (~0 – 2000 m)	
Measurement Ranges of Selected Gas Components		
CO ₂	0 – 20 Vol.%	
СО	0 – 5 Vol.%	
NO	0 – 1,500 ppm	
NO ₂	0 – 1,000 ppm	
NOx (NO + NO ₂)	0 – 1,500 ppm	
NH ₃	0 – 1,500 ppm	

Other Gas Components

 N_2O

HCHO

CH₄, THC_{FTIR equiv}., NMHC, NMOG and many more

Analyzer Specification

Optical bench purging

Analyzer Specification		
Measurement principle	FTIR (Fourier Transform InfraRed)	
Detector cooling	Thermoelectric	

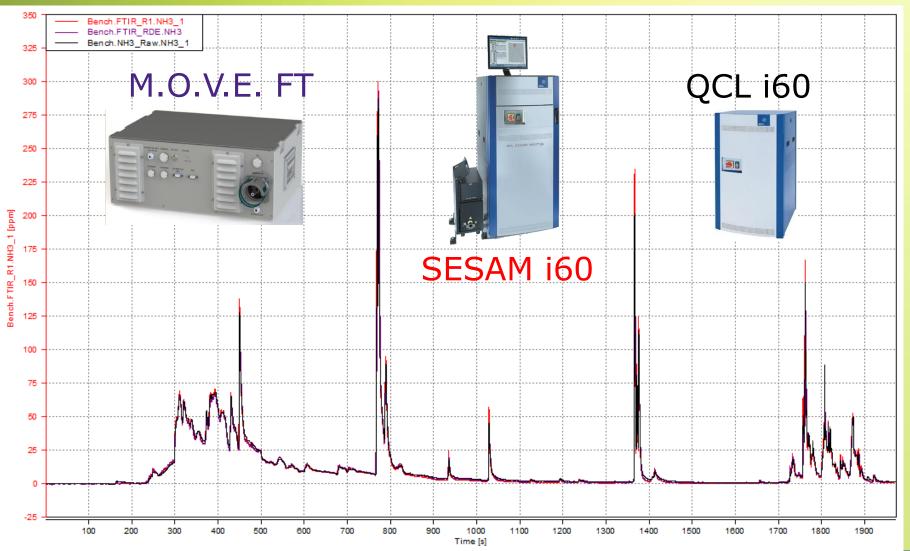
0 - 1,500 ppm

0 - 200 ppm

Not required

FTIR/Mehrkomponenten-Emissionsmesssystem

- Kompakt und leicht (18kg)
- Alternative zur GAS PEMS für Kunden, die neue Analysatoren Technologie akzeptieren
- Messung aller relevanten Gaskomponenten innerhalb eines Systems

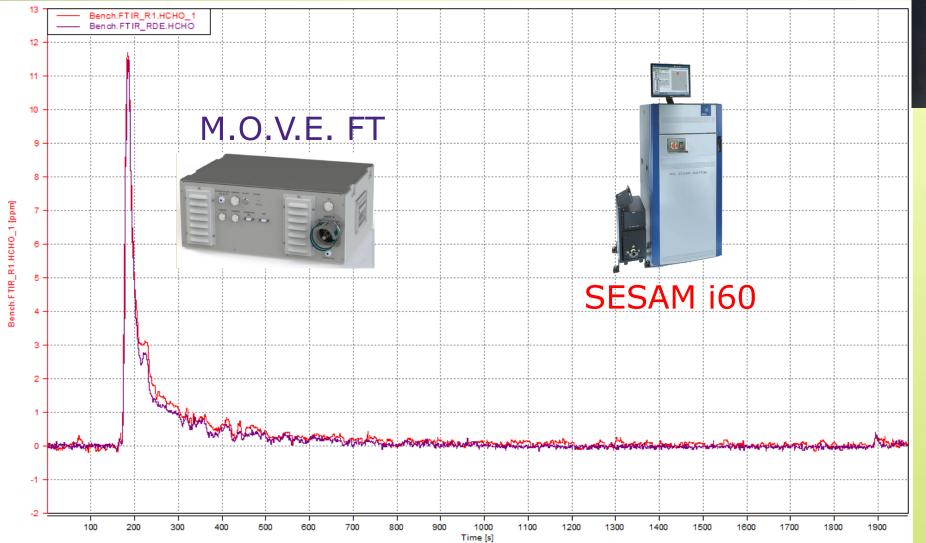

Variantenpakete:

- Standardsetup HD (N₂O, HCHO, NH₃,CH₄,H₂O)
- Erweiterungspaket 1 (CO/CO₂/NO/NO₂/NO_X)
- Erweiterungspaket 2 (THC_{FTIR äquivalent,}.......)
- Reduzierter Aufwand bzgl. Kalibrierung (Zero)

Kein flüssiger Stickstoff erforderlich

- Probennahme Fluss 5/min.
- Integriert in die AVL System Control (WIN10) oder "Standalonebetrieb"

AVL M.O.V.E. FT - Korrelation NH₃



Hervorragende NH₃Korrelation zwischen
 M.O.V.E FT (lila), SESAM i60
 FT SII (rot) und QCL i60
(schwarz)

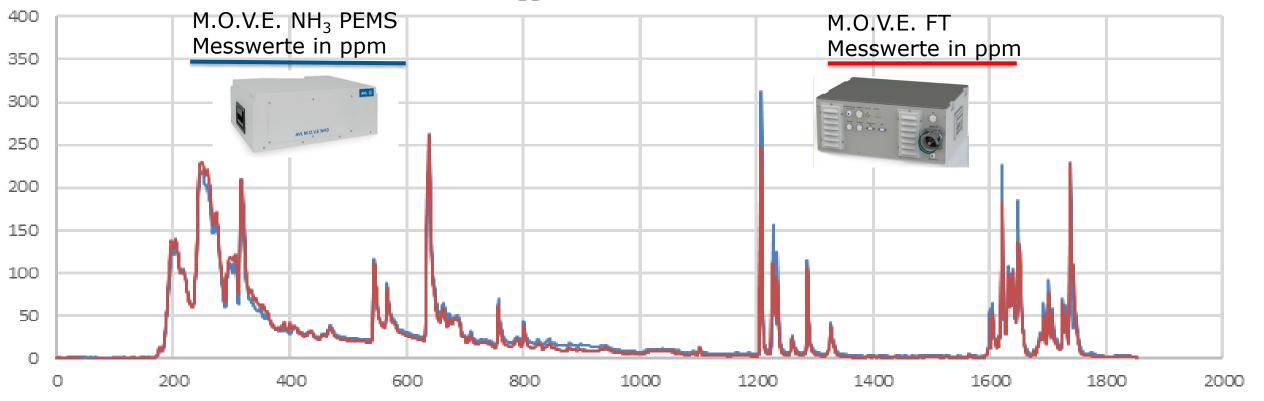
- Test-Bedingungen
- WLTC-Test bei 23°C
- Kraftstoff Benzin E10
- Euro 6 Pkw

Public / 32 | AVL Emission Techday | 2023

AVL M.O.V.E. FT - HCHO

 Hervorragende HCHO-Korrelation zwischen M.O.V.E FT (lila) und SESAM i60 FT SII (rot)

Test Konditionen


- WLTC Test at 23°C
- Benzin E10
- Euro 6 PKW

| AVL Emission Techday | 2023 | AVL 🐕

Vergleich M.O.V.E. FT vs.NH₃ PEMS

Confirmation of PEMS - WLTC Gaggenau, 13.04.2023

Mobile Partikelanzahlmessung unter EU 7 Anforderungen

AVL %

AVL PN Advanced mobile PN10 Messung

AVL 🐕

EPC Advanced (neue Sensorgeneration)

- Messung der Partikelanzahlkonzentration für LDV PN 10 und Heavy Duty PN 10
- Höhere Empfindlichkeit, ~ 3 mal niedrigerer LOD (~ 1.000 #/cm3) in Vergleich zu PN PEMS
- Erweiterter maximaler Bereich: 7*10⁷ #/cm³ (2* mal höher)
- Erweiterter linearer Sensorbereich zur Detektion von hohen "Kaltstart-Peak"
- Nachrüstung bestehender Geräte möglich 23>10nm
 PN PEMS Advanced Selectabel
 Umschaltbarkeit von 23nm (Eu6d/EU6e) auf EU7
- Sensorprinzip ist sehr robust, verfügt über einen weiten Messbereich und benötig **kein Betriebsmittel!**

Public / 36 | AVL Emission Techday | 2023

System Control Advanced – Leistungsstarke Integrationsplattform für hohe IT-Sicherheit

- Robustes Design, MIL-Standard, Temp. (-20 ... 60 °C)
- Externe digitale GNSS/GPS mit Umgebungssensoren
- **Externe digitale Umgebungssensoren** können ohne System Control Einheit kalibriert werden opt. nach ISO 17025
- Nahtloser und automatisierter RDE-Prozess mit der AVL In-Vehicle Data Management Solution
- Zeitersparnis durch automatisierte Geräteprüfungen
- Testdurchführung nach gesetzlichen Vorgaben EU6c/d/e/...
- Sichere Datenübertragung mit signierten Zertifikaten TPM-Chip
- Optimierte WLAN/CAN Schnittstelle
- Kombinierbar mit AVL X-Meter zu Leistungsmessung (U/I/..)
- 100% Leistungssteigerung gegenüber bestehendem System
- INCA & DiagRA Integration

System Control Advanced – Leistungsstarke Integrationsplattform für hohe IT-Sicherheit

verfügbar im August 2023

- Robustes Design, MIL-Standard, Temp. (-20 ... 60 °C)
- **Externe digitale GNSS/GPS** mit Umgebungssensoren
- **Externe digitale Umgebungssensoren** können ohne System Control Einheit kalibriert werden opt. nach ISO 17025
- Nahtloser und automatisierter RDE-Prozess mit der AVL In-Vehicle Data Management Solution
- Zeitersparnis durch automatisierte Geräteprüfungen
- Testdurchführung nach gesetzlichen Vorgaben EU6c/d/e/...
- Sichere Datenübertragung mit signierten Zertifikaten TPM-Chip
- Optimierte WLAN/CAN Schnittstelle
- Kombinierbar mit AVL X-Meter zu Leistungsmessung (U/I/..)
- 100% Leistungssteigerung gegenüber bestehendem System
- INCA & DiagRA Integration

System Control Advanced – Leistungsstarke Integrationsplattform für hohe IT-Sicherheit

DETAILS		
Operating temperature	-20°C to 65°C	
Power supply/ power consumption	9 – 36 VDC, typ. below 100W	
Ambient temperature	-10 – +45 °C (14 – 113 °F)	
CPU	Intel® Core™ i3-9100HL	
RAM	8 GB	
Memory	265GB SSD	
Operating System	Windows IoT (embedded)	
Interfaces	Frontside: • 2x standard USB plugs (Type A) • 1x Standard Display port • 1x Standard DVI port • 2x Standard Ethernet ports Backside: • 4x USB 3.1 Fischer plugs • 2x Standard USB 3.1 plugs • 1x Power In • 8x Ethernet (ODU) • 1x RS232	
GNSS Sensor (GPS)	 GPS: I1, 1575.4200 MHz Beidou compass: b1, 1561.0980 MHz Galileo: e1, 1575.4200 MHz Qzss: I1, 1575.4200 MHz 	
Ambient probes, external	T: -40 to +80 °C, 0 to 95 %rH, 0.5 to 1.5 bar	
Wireless Network	Wi-Fi 5 (802.11/a/b/g/n/ac)	
IT Security	Trusted Platform Module (TPM) 2.0	

- Robustes Design, MIL-Standard, Temp. (-20 ... 60 °C)
- **Externe digitale GNSS/GPS** mit Umgebungssensoren
- **Externe digitale Umgebungssensoren** können ohne System Control Einheit kalibriert werden opt. nach ISO 17025
- Nahtloser und automatisierter RDE-Prozess mit der AVL In-Vehicle Data Management Solution
- Zeitersparnis durch automatisierte Geräteprüfungen
- Testdurchführung nach gesetzlichen Vorgaben EU6c/d/e/...
- Sichere Datenübertragung mit signierten Zertifikaten TPM-Chip
- Optimierte WLAN/CAN Schnittstelle
- Kombinierbar mit AVL X-Meter zu Leistungsmessung (U/I/..)
- 100% Leistungssteigerung gegenüber bestehendem System
- INCA & DiagRA Integration

| AVL Emission Techday | 2023

AVL 🎇

AVL M.O.V.E GAS PEMS iS+

- Genauigkeit NO/ NO2 wird durch reduzierten Messbereich und optimierter Kalibrierung weiter verbessert
- Genauigkeit CO/ CO2: konform zum aktuellen EU7-Entwurf
- Driftanforderungen EU7 Vorschlag: wird erfüllt für GAS PEMS iS+ mit AMIGA und installiertem UREA KIT

AVL 🐕

AVL M.O.V.E GAS PEMS iS+

Specifications

Measurement ranges (linearity check range, analyzer can still measure higher concentrations)

NO: 0 - 1,500 ppmNO2: 0 - 1,000 ppm

Measurement accuracy

NO: +/-1.5 ppm or +/-2% rel. NO2: +/-1.5 ppm or +/-2% rel.

Zero drift / 4 hrs.

NOx: \leq 3 ppm

EU6e Definition oder EU7 Vorschlag:

NOX ≤ 3 ppm per Test

≤ 2 % vom MW oder ≤ 3 ppm per Test, es gilt der größere Wert

AVL 💑

AVL M.O.V.E GAS Advanced Low NOx Messung EU7 Ready

- Verbesserte NOx Auflösung und Stabilität im Vergleich zur PEMS IS+
- Basierend auf dem bestehenden GAS PEMS iS+ / mit Modifikationen
- Optimierter ABB NDUV-Analysator mit hoher Empfindlichkeit
- Hauptfokus auf niedrige Nullpunktdrift (\sim < 1 ppm/4 Std.), zur exakteren Erfassung niedrigster NOx Konzentrationen durch das verwendete LOW NOx Konzept
- Verfügbarkeit GAS PEMS Advanced im 4. Quartal 2023

AVL M.O.V.E GAS Advanced Low NOx Messung EU7 Ready

TARGET	O 'C'	
	Shaciti	icatione
IANGLI	ODECIII	Gaudis

Messbereiche (Linearitätsprüfbereich, Analysator kann noch höhere Konzentrationen messen)	NO: 0 – 1,500 ppm NO2: 0 – 1,000 ppm
Messgenauigkeit	NO: 0 – 999ppm +/-1ppm oder +/-1.5% relativ 1000 – 1,500 ppm: +-2% relativ NO2: +/-1ppm or +/-1.5% rel.
Zero drift / 4 hrs.	NOx: ≤ 1 ppm

EU6e Definition oder EU7 Vorschlag:

NOX ≤ 3 ppm per Test

≤ 2 % vom MW oder ≤ 3 ppm per Test, es gilt der größere Wert

AVL FID iS+ (THC) & Methan (CH4)

Public

AVL M.O.V.E FID iS+ RDE optimierter Dual-Channel FID

- Für die gleichzeitige Messung der THC und CH4/NMH-Konzentrationen ist ein Zweikanal-FID installiert
- Misst bei konstantem Druck und ist daher unabhängig von Luftdruckänderungen
- Gezielt einsetzbar in Höhenlagen bis 3000 Meter (EU7 1800m) über dem Meeresspiegel
- Als Brenngas wird im Betrieb H2/He verwendet
- Gemeinsame Verwendung für LDV,HDV-Tests in der EU und den USA, sowie für NRMM-Tests in der EU

AVL 💑

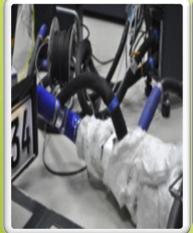
AVL QS (QUALITY STATION) – vollautomatisierte Lösung

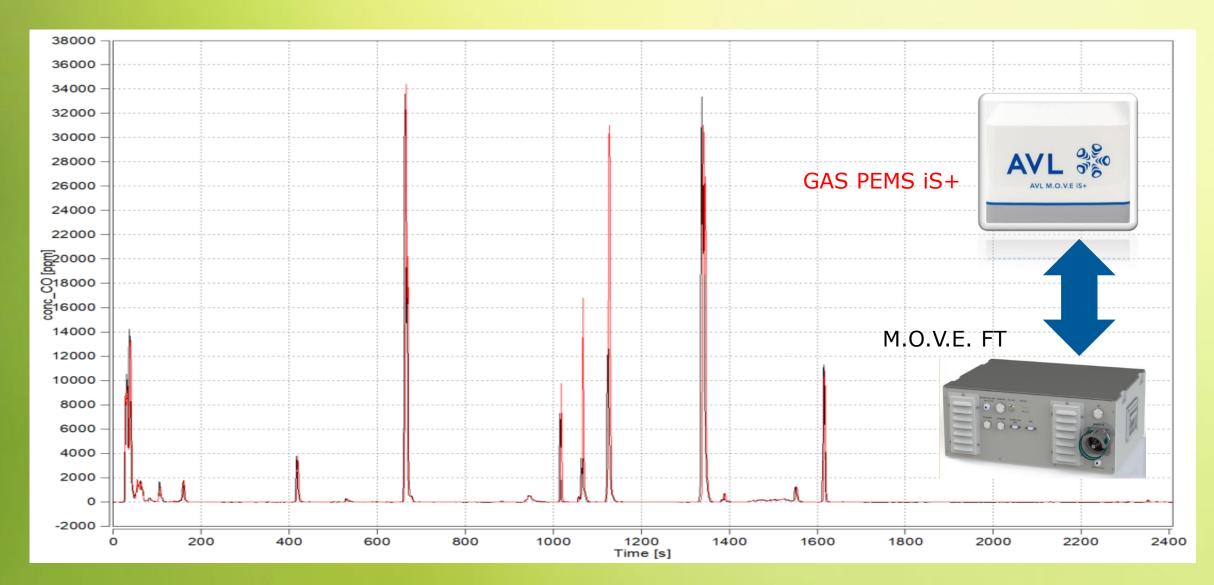
- Automatisierte Kalibrierung und Überprüfung
- Automatisierte Linearitätsprüfungen mit AVL GDU (SL)
- **Zukünftige Erweiterung QS mit separatem NH3 Pfad**
- Überprüfung der Reaktionszeiten
- "H2/He FID Fuel Switch Box" ermöglicht den Wechsel Laborgasversorgung/Gasflaschen (unterbrechungsfrei)
- Automatisierung, Datenprotokollierung und Protokollgenerierung werden durch AVL System Control deutlich erleichtert

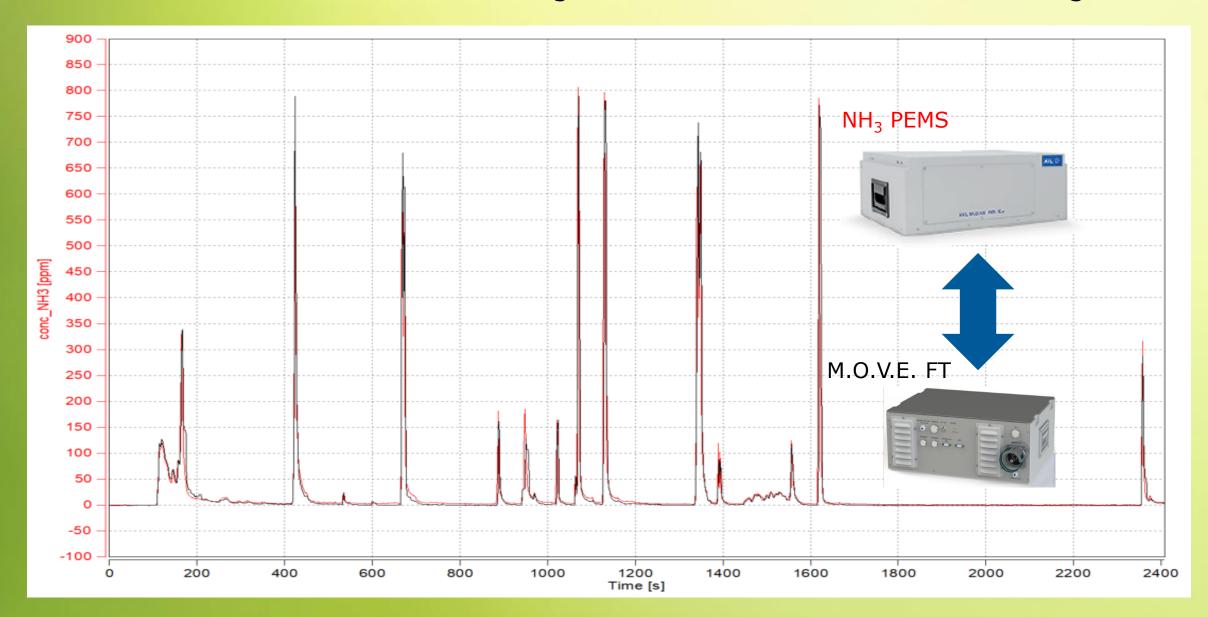
Euro 7_{PKW}: AVL Test-Erfahrung, Gaggenau, 13.-19.04.2023 🚓 🔼

1. Confirmation of PEMS (WLTC)

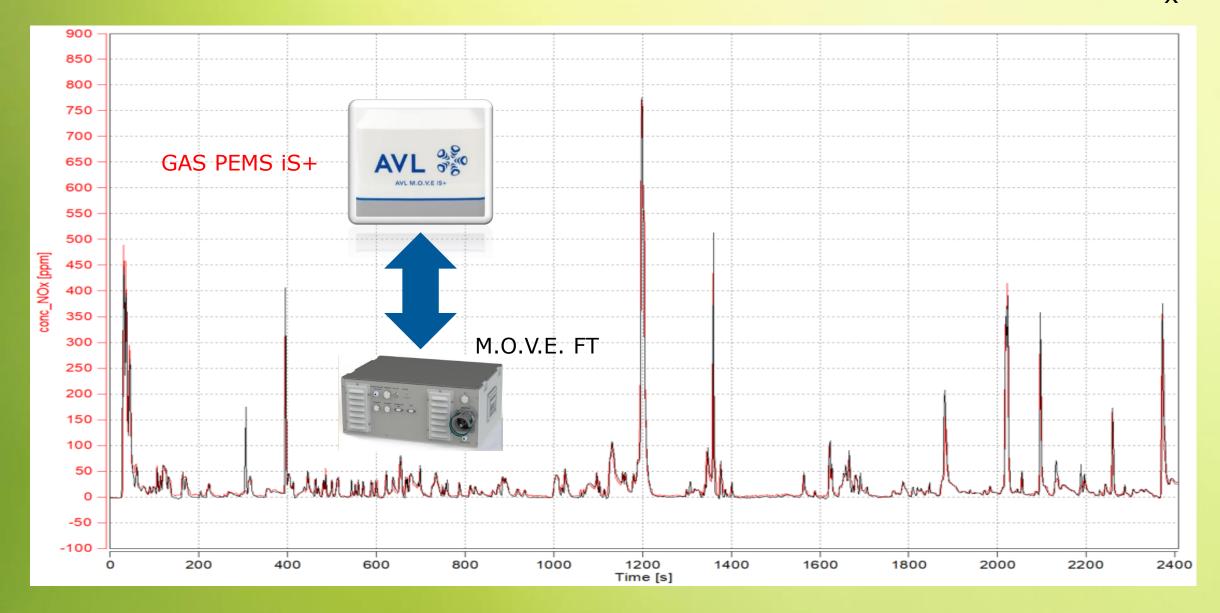
2. RDE (on-road)


3. Road-2-Lab RDE Cycle in Lab





| AVL Emission Techday | 2023 Public


RDE Korrelation M.O.V.E GAS PEMS iS+ vs. M.O.V.E FT - CO

RDE Korrelation M.O.V.E NH₃ PEMS vs. M.O.V.E FT - NH₃

RDE Korrelation M.O.V.E GAS PEMS iS+ vs. M.O.V.E FT - NO_x

Aktuelle Komponentenverfügbarkeit

EU 7 Zusammenfassung

- OBM Applikationsunterstützung mit PEMS Messtechnik möglich!
- Neue Generation an Analysatoren-Modulen (LDS,M.O.V.E. FT,PM10,THC) im AVL Portofolie erhältlich!
- Anforderungen hinsichtlich CEN Tests erfüllt (gilt für iS+ & Advanced Anlagen).
- Gesamtkonzept EU7 PEMS iS+/Advanced tauglich für LDV & HDV, aus heutigem Blickwinkel!
- Workflow Optimierung und Dokumentation, via System Control in Kombination mit AVL Datenmanagementtool verfügbar!
- RDE Messungen mit Übertragbarkeit der Fahrt auf den Rollenprüfstand, optional RDE Cycle Generator auf Anfrage verfügbar.

Vielen Dank für die Aufmerksamkeit

