

Nfz – Prüfstandskonzept für die Motorenentwicklung und Homologation (Emissionsmessungen, H2-ICE-Prüfstand) Leimen, 25. Mai 2023

T. Kauffeldt

Kurzvorstellung:

Public

33 years in measurement technology 19 years at AVL

- Business unit sales support team leader
- Global accounts support
- Emission and energy measurement application management with focus on heavy-duty and non standard applications

Dr. Thomas Kauffeldt Teamleader Global Account Support AVL Analytical Technologies GmbH Neuss Thomas.kauffeldt@avl.com

ICE Carbon-Free/Neutral Fuels

2035: -65% CO_{2 Tailpipe}

2035: Zero CO_{2 Tailpipe}

EU CO2 reduction targets "Fit for 55"

EU targets for Light-Duty vehicles

- 2025 tailpipe CO2 fleet average -15% in reference to 2021
- 2030 tailpipe CO2 fleet average -55%
- 2035 tailpipe CO2 fleet average -100%
- H2, e-Fuels and Bio-Fuels are currently not considered as Zero.

EU targets for Heavy-Duty vehicles

- 2030 tailpipe CO2 fleet average -45% in reference to 2019
- 2035 tailpipe CO2 fleet average -65%
- 2050 tailpipe CO2 fleet average -90%

"ONLY" - CO₂, Tailpipe Not fully environmental relevant and "Green washing of BEV"

Nov. 2022: EU Commission published the Euro-7 proposal

- Which gives a first indication what Euro-7 "Legislation" will be.
- Euro-7 is one common legislation for Light- und Heavy-Duty vehicles, brakes and tires.
- In 2023 the technical details will be defined (implementing regulations, which will be different for LD and HD).

UROGREAD

• Euro-7 defines how CO2 is measured but does not regulate CO₂.

Powertrain Development Process

Not all cases can be covered on the road, need to use all simulation levels to prepare OEM declaration

Public

Euro 7_{Heavy-Duty}: Limits

EURO 7 EMISSION LIMITS

Table 2: Euro 7 exhaust emission limits for M₂, M₃, N₂ and N₃ vehicles with internal combustion engine and internal combustion engines used in those vehicles

Pollutant emissions	Cold emissions ²	Hot emissions ³	Emission budget for all trips less than 3*WHTC long	Optional idle emission limits ⁴
	per kWh	per kWh	per kWh	per hour
NO _x in mg	350	90	150	5000
PM in mg	12	8	10	
PN ₁₀ in #	5x10 ¹¹	2x10 ¹¹	3x10 ¹¹	
CO in mg	3500	200	2700	
NMOG in mg	200	50	75	
NH ₃ in mg	65	65	70	
CH4 in mg	500	350	500	
N ₂ O in mg	160	100	140	
HCHO in mg	30	30		

Cold emissions refers to the 100th percentile of moving windows (MW) of 1 WHTC for vehicles, or WHTCcold for engines

Hot emission refers to the 90th percentile of moving windows (MW) of 1 WHTC for vehicles of WHTChot for engines

Applicable only if a system is not present that automatically shuts down the engine after 300 seconds of continuous idling operation (once the vehicle is stopped and brakes applied)

Tests with more than 3 WHTC windows must fulfill both limits, Cold and Hot. However, there will be no separate hot or cold test.

- Cold limit is 100% percentile, so
- including cold start peaks.
- Hot limit is 90% percentile, so
- excluding cold start peaks.

RDE tests up to 3 WHTC windows must fulfill the Emission Budget limit.

Engine fuel mapping cycle for VECTO CO2 simulation.

In discussion if an engine pollutant WHTC cycle is needed. EU Commission cares only for vehicle, OEMS prefer a testbed test for multi stage vehicle applications.

Based on original Document of EU Commission proposal for Euro-7, 10.11.2022

17

Criteria Emissions – Heavy-Duty Euro-VII limits

Component Candidates	Light-Duty	Unit	EU-VII Heavy-Duty M2, M3, N2 and N3					
			Cold emissions 100th percentile	Hot emissions 90th percentile	Emission Budget < 3xWHTC	Idle emission if no 5min automatic engine shut off		
CO2	~	mg/kWh	\checkmark	\checkmark				
CH4 + N2O		mg/kWh	-	-				
СО	\checkmark	mg/kWh	3500	200	2700			
NOx	\checkmark	mg/kWh	350	90	150	5000 mg/h		
THC	✓	mg/kWh	-	-				
NOx + THC		mg/kWh	-	-				
CH4	\checkmark	mg/kWh	500	350	500			
NMHC	\checkmark	mg/kWh	-	-				
Alcohols		mg/kWh	Needed for NMOG	Needed for NMOG	Needed for NMOG			
NMOG		mg/kWh	200	50	75			
PM	✓	mg/kWh	12	8	10			
PN _{10nm}	✓	[#] /kWh	5E+11	2E+11	3E+11			
N20		mg/kWh	160	100	140			
NH3	\checkmark	mg/kWh	65	65	70			
НСНО		mg/kWh	30	30				

EU VII Legislation HD AVL Interpretation

- Transition from Lab Testing to Road Testing
 Emission reduction down to
 - 350 mg/kWh NO_x for cold start
 - 90 mg/kWh NO_x in hot condition
- Limits for HCHO, N₂O, CH₄, PN₁₀ and NH₃ in RDE
 - Balancing of conflicting targets
- Emission compliance under all RDE conditions
 - Almost no boundaries on test conditions (ambient temperature, altitude, vehicle mileage, engine load, ...)
 - No dedicated preconditioning
 - No separate weighting of cold start

NO.

ΡM

ΡN

NH₃

 N_2O

Proposed Limits for ISC

*: Euro VI no NH_3 and $\mathsf{N}_2\mathsf{O}$ limit in ISC

Main topics for HD EU7 – ICE Emission Testing

Public

Overview HD Engine Test Cell – Partial Flow Dilution

Public

Emission Automation – iGEM 2

Changes to the standard regulatory test application (so far known as of today)

No combined weighted result of cold and hot WHTC WHTC cold and WHTC hot as two test cycles and/or one cycle with 2 evaluations

Additional test applications and calculation packages (R&D mainly)

New Limits

Public

/ 12

Δ

1

2

3

Emission Automation – iGEM2

R&D requirements expected based on first discussion with HD customers and PTE

Tests and requirements at initial emission type approval Required demonstration tests for all fuels for which the type approval is granted per vehicle type and a declaration of compliance for all fuels, all payloads and all applicable vehicle types

R&D requirements expected:

- Worst Case Cycle Generator
- Road to Lab Importer: Torque/Speed profile at the test cell. Result calculation as MOVE systems.

Testbed automation – PO2 & iGEM2

In discussion if an engine pollutant WHTC cycle is needed. EU Commission cares only for vehicle, OEMS prefer a testbed test for **multi stage vehicle** applications.

Extended Vehicle Simulation on the engine / powertrain test bed Additionally advanced VTB needed.

Simulation:

SIL Simulation

HIL Simulation

Engine testing

/ 14

24/7 Powertrain testing

EU7 HD- in Laboratory Real Driving "Vehicle" Testing - Possible Test System approach

CO2 & Fuel Consumptions – Best guess February 2023

Fuel cycle test delivers the input dada for the **VECTO** tool. VECTO (Vehicle Energy Consumption Calculation Tool) is a simulation tool developed by Graz University of Technology (TUG) to calculate HD vehicle fuel consumption and CO2 emissions based on engine testbed data. This test will remain as it is already for Euro 6. Regeneration of exhaust aftertreatment systems shall be included by a weighting factor.

FCMC Will be required for Euro 7. Basically Euro 6 provisions will be taken over (up to 110 points, same map). Possible changes to Euro 6: Emissions will be measured in every point of the FCMC, the average emissions over the whole map must be below the WHTC hot limit. Actually, there is a control area where emissions must be below the NTE limit. Final decision open.

iGEM2 solution for Euro-7

Public

Criteria Emissions: New emission components

Gas component		Accepted analyzer types, as defined in GTR-15 (WLTP)									5 (WL	TP)				Notes
	ſ	FTIR 🏷	NDIR		۲ ر	LDS	GC-ECD	PAS	Impinger	DNPH Catr.	PTR-MS	Direct GC	FID	NMC-FID	GC-FID	
N2O Nitrous oxide	Γ	✓	\checkmark	~			~									Batch sample for GC-ECD
NH3 average conc. Ammonia		✓		V		✓										 raw sample for average NH3 concentration.
NH3 mass Ammonia		✓		V		✓										 sampling method to be defined
HCHO Formaldehyde Acetaldehyde		✓								✓						 cont. diluted or cartridge sample
Alcohols		✓						\checkmark	\checkmark		\checkmark	\checkmark				 only when the HC limit will be based on NMOG
NMOG		✓						\checkmark	\checkmark		\checkmark	\checkmark	✓	✓	~	 NMOG = THC + Aldehydes + Alcohols - CH4
	+ 	- others	ers SAM D1									NMC FTIF NDI QCL LDS GC- PAS DNP PTR DIRE FID NMC GC-	DG R ECD inger PH Cart. -MS ect GC C-FID FID	 Non-Methane Organic Gases Fourier Transform Infra-Red multi component analyzer Non-Dispersive Infra-Red analyzer Quantum Cascade Lasers analyzer Laser Diode Spectrometer Gas Chromatograph Electron-Capture Detector Photo-Acoustic analyzer Alcohol sampler with High-Pressure Liquid Chromatography (HPLC) Dinitrophenylhydrazine impregnated cartridges with Gas Chromatography Proton Transfer Reaction - Mass Spectrometry direct measuring Gas Chromatograph Flame Ionization Detector Non-Methane Cutter - Flame Ionization Detector Gas Chromatograph - Flame Ionization Detector 		

SESAM FT

New Components EU7 HD

NH3 (mg / kWh instead ppm) CH4 N20 HCH0 NMOG = THC + Aldehyde + Alcohol - CH4 (as CARB) = THC + Aldehyde - CH4 + F_{fuel} (actual discussion @ CLOVE)

Measured Gas Components								
CO - Carbon monoxide	CH ₄ - Methane	C ₂ H ₅ OH - Ethanol	NC ₅ - n-Pentane					
CO ₂ - Carbon dioxide	C ₂ H ₂ - Acetylene	CH ₃ OH - Methanol	NC ₈ - n-Octane					
H ₂ O - Water	C ₂ H ₄ - Ethene	CH ₃ CHO - Acetaldehyde	HNCO - Isocyanic acid					
NO - Nitrogen monoxide	C ₂ H ₆ - Ethane	HCHO - Formaldehyde	HCN - Hydrogen cyanide					
NO ₂ - Nitrogen dioxide	C ₃ H ₆ - Propylene	HCOOH - Formic acid	COS - Carbonyl sulfide					
N ₂ O - Nitrous oxide	C ₃ H ₈ - Propane	SO ₂ - Sulfur dioxide	AHC - Aromatic HC					
NH ₃ - Ammonia	C ₄ H ₆ - Butadiene	IC ₅ - iso-Pentane						

CLD analyzers for Low NO_x measurements

Decreasing $NO_{(x)}$ emissions lead to a need for lower measuring ranges:

- Raw measurements with 0...3 ppm range
- Dilute measurements with 0...1 ppm range

However, in the cold start phase much higher concentrations occur. A measuring range of 1,000 ppm will not cover the cold start phase. Here, values up to 3,000 ppm are expected.

1800 1600 1400 1200 d 1000 ŏ 800 600 400 200 6940 6960 6980 7000 7020 7040 7060 Time (s)

New/adapted CLD SL analyzers:

CLD type	Highest range	Lowest range	Linearity limit	Quench	Temp.
(DUAL) CLD SL low/high * switchable	0 3,000 ppm 0 10,000 ppm	0 3 ppm 0 10 ppm	0.3 ppm 1 ppm	< 1% < 1%	180°C 180°C
(DUAL) CLD SL super low **	0 500 ppm	0 1 ppm	0.1 ppm	~0,25% per % H_2O	180°C

* The switchable CLD is optimized for Low NO_x applications.

The range specific parameters are stored in the AMA. For switching a reboot of the analyzer is required. It secures your investment by allowing to cover older applications with higher concentrations. **One CLD Type for the complete test field.**

** To come down to a range of 1 ppm a higher flow rate is required. This leads to a worse quenching behavior than standard CLD SL analyzers:

2035: -65% CO_{2 Tailpipe}

ICE Carbon-Free/Neutral Fuels

Heavy-Duty Vehicles

H2 (Carbon free fuel) in Emission Regulations:

Carbon free fuel ICE Emission Regulations	UN-ECE / EU	USA	ISO		
Use cases	(Very) Lean Proposal	All use cases	All use cases		
Fuel	H2	All Carbon-free fuels (H2, NH3)	All Carbon-free fuels (H2, NH3)		
Fuel type	Mono fuel	Mono and Dual fuels	Mono and Dual fuels		
Emissions measured	All limited components	Criteria emissions plus H2O, H2, and NH3	Criteria emissions plus H2O, H2, and NH3		
Measurement method:					
Raw exhaust	\checkmark	\checkmark	\checkmark		
Continuose diluted	Х	\checkmark	\checkmark		
Bag diluted	Х	\checkmark	\checkmark		
Exhaust flow rate determination	• measured	 Measured or Calculated out of 2 quantities of O2, H2O or H2 plus NH3 for NH3 fuel. 	 Measured or Calculated out of 2 quantities of O2, H2O or H2 plus NH3 for NH3 fuel. 		
Dry-to-Wet correction	\checkmark	\checkmark	\checkmark		
CVS Background correction	No (No CVS measurement)	\checkmark	\checkmark		

EPA - 40 CFR 1065

Draft for new 1065 Sections and Section Modifications for ZCF (**Zero Carbon Fuels**)

§1065.25X H₂ measurement devices.(1) Magnetic sector mass spectrometer.

§1065.257 Fourier transform infrared analyzer Challenge for for H₂O measurement. Cal. gas

 $\$1065.357 \text{ CO}_2$ interference verification for H_2O FTIR analyzers.

§1065.277 NH₃ measurement devices.
(2) Fourier transform infrared (FTIR) analyzer.

§1065.657 Chemical balances of zero-carbon fuel, DEF, intake air, and exhaust.

H2 ICE: exhaust gas

H2 ICE: Water load in the exhaust (impact on analytical system)

Chiller capacity

AMA SL: $H_2O < 35\%$ using one chiller circuit, peak wise above

AMA i60: $H_2O < 25\%$ with one, < 45% with two**

CLD Quench

Regulation requirements fulfilled for all $\rm H_2O$ ranges with AVL Hot (SCR) CLD

H₂O Interference

Critical for H_2 mass spectrometer (magnetic sector field) so far not compensated.

- UNR 134 Approval of hydrogen-fuelled vehicles with regard to the safety-related performance
- Part I and II are about type approval tests for hydrogen storage systems and its components (e.g. fire, leak, corrosion tests)
- Part III is defining type approval tests for vehicles:
 - max. allowed H₂-emissions of the exhaust:

(a) ≤ 4 % average by volume during any moving 3 sec. time interval during normal operation (including start-up and shut-down)

(b) < 8 % at any time

- > vehicle and measuring device are fully warmed up
- \succ continuous measurement of H₂-conc. during:
 - complete shut-down procedure with a restart
 - idle for 1 minute followed by a complete shutdown
- measurement response time < 300 ms</p>

Thank you

www.avl.com