

Aiming for Carbon Neutrality: Experiences and Perspectives From a Current Sensor Maker

Webinar series episode 3

Today's Webinar Content Is Brought to You by Presenters From LEM, Strategy Engineers (SE) and AVL

Today's Presenters

Quentin Piat

ß

Global Head of Sustainability

>12 yrs. of experience

Martin Rothbart

Senior Product Manager

- >20 yrs. of experience
- Product strategy, environmental T sustainability

martin.rothbart@avl.com

Arndt von Gregory

Principal SE

>20 yrs. of experience

Transformation strategy,

organisation, product profitability

- 1 Welcome and recap webinar episodes 1 and 2
- 2 Introduction LEM and initial situation
- 3 CO₂ measurement methods applied
- 4 Results and conclusions based on CO₂ emission measurement
- 5 Action plan and quick wins
- 6 Next steps in LEM's mission for CO₂ neutrality

3rd Webinar in Our 3-Part Series on CO₂ – Experiences and Perspectives From an Automotive (TIER1) Supplier

Introduction of Webinar series and content

Webinar 1Webinar 2Webinar 3Carbon footprintImage: Carbon footprint<

From Carbon Footprint to the Future: CO₂ Compliance as a Mandatory Entry Ticket to Markets, Customers and Financing

Design to CO₂: Reality Check

Aiming for Carbon Neutrality: Experiences and Perspectives From a Current Sensor Maker

Date: May 16th 2023

© 2023

Confidential

Date: June 13th 2023 **Date:** October 20th 2023, 10.00 CET In the First Webinar We Laid the Foundation: Relevance of CO₂ for Companies and Particularly for Product Design

From Carbon Footprint to the Future – webinar No 1 – May 16th 2023

Webinar No 1

Content-details

- **Stakeholder** for CO₂ footprint reduction
- Greenhouse gas protocol & scope 1/2/3 definitions
- **Regulation** & systems to reduce CO₂ emissions
- Relevance of **CO₂ in** product **cost calculation**
- Steps to become carbon neutral
- **Governance** requirements for carbon neutrality
- Managing carbon neutrality

Co2e to Be Considered in Development Process & Design Guidelines

Design to CO₂: Reality Check – webinar No 2 – June 13th 2023

Webinar No 2

Content details

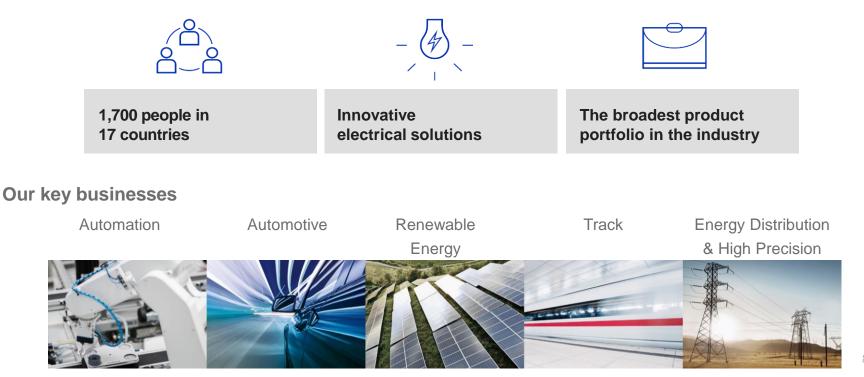
• A battery case study is used to explore the opportunities for CO₂e reduction through material and design decisions.

AVL 38

- Standardized rules for future comparability were proposed.
- Trade-off between cost and sustainability in the future production of traction batteries.

Key topics and takeaways:

- Comparison of proven pack manufacturing technologies: steel vs. aluminum vs. composite
- Outlining improvement potentials on CO₂e emissions
- Explore guidelines for minimized carbon footprint in a dedicated design to CO₂e development process



- 1 Welcome and recap webinar episodes 1 and 2
- 2 Introduction LEM and initial situation
- 3 CO₂ measurement methods applied
- 4 Results and conclusions based on CO₂ emission measurement
- 5 Action plan and quick wins
- 6 Next steps in LEM's mission for CO₂ neutrality

LEM, in short

Leading the world in electrical measurement, LEM engineers the best solutions for energy and mobility, ensuring that our customers' systems are optimized, reliable and safe.

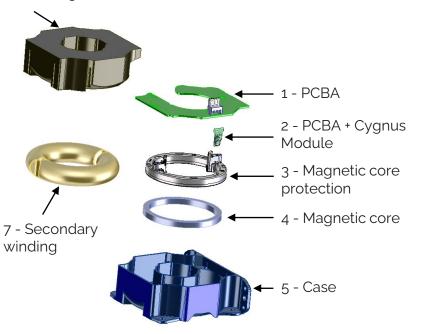
LEM's Production Capacity

Production centers in China, Bulgaria, Switzerland, Japan, Malaysia + sub-contractors 700

total production workers

11_{soon}20 + 60_{million}

K sqm total production surface

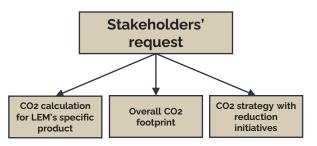

sensors and solutions produced per year

LEM's Products Are Characterized by a Limited Number of Components With Broad Range of Suppliers in Different Territories

Product specifics of a selected LEM sensor LF 1010-S/SP16

6 - Potting

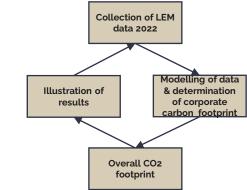
The LF 1010-S/SP16 sensor consists of 7 components, from 8 different suppliers.


Component	Supplier	Region
1 - PCBA	Supplier 1	Eastern EU
2 - PCBA Cygnus module	Supplier 2 Supplier 3	Eastern EU Western EU
3 - Magnetic core protection	Supplier 4	Western EU
4 - Magnetic core	Supplier 5	APAC
5 - Case	Supplier 6	Eastern EU
6 - Potting	Supplier 7	APAC
7 - Secondary winding	Supplier 8	Western EU

Almost Two Years Ago LEM Has Started to Consider CO₂-Emissions as a Major Focus Area ...

Background and project objectives

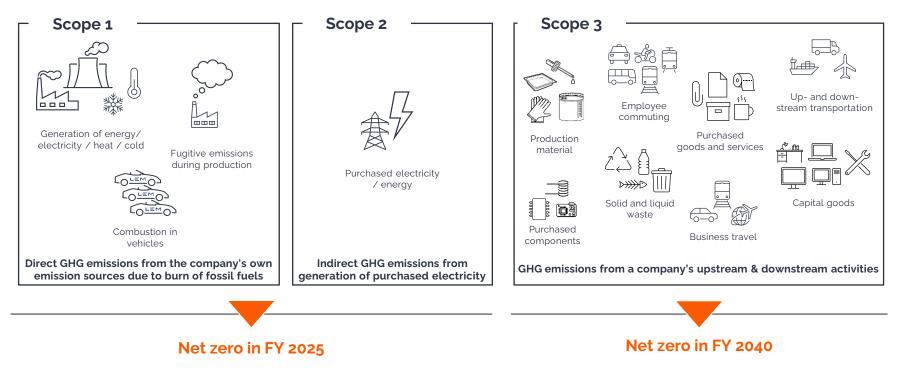
Background



Initial project objectives

- Answer to the stakeholders' request through :
 - CO₂ calculation of 6 products representing the LEM's technologies
 - Company-wide high-level CO₂ assessment, (scope 1 3) on its 3 key production sites and 1 R&D center;
 - Identify high-level CO₂ emission reduction ideas.

Follow up project workstreams

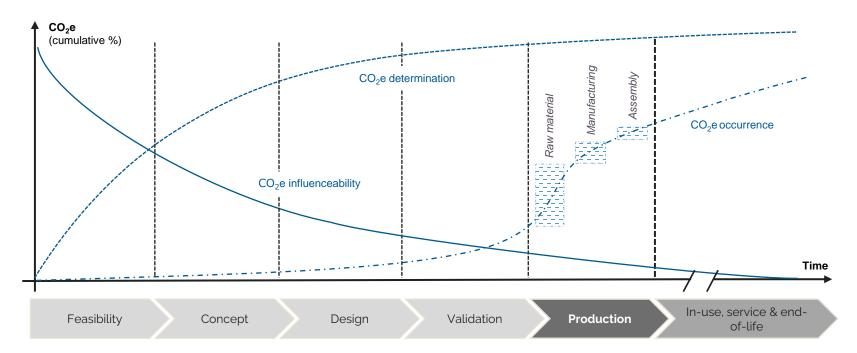

<u>Workstream 1:</u> Assessment of LEM corporate carbon footprint

- <u>Workstream 2:</u> Review of the implementation status of the CO₂ strategy
 - Identification of gaps and improvement potentials;
 - Report on action implementation status.

... and Has Committed Itself to Reach Net Zero Targets in 2025 for Scope 1 and 2 Emissions and 2040 for Scope 3

Confidential © 2023

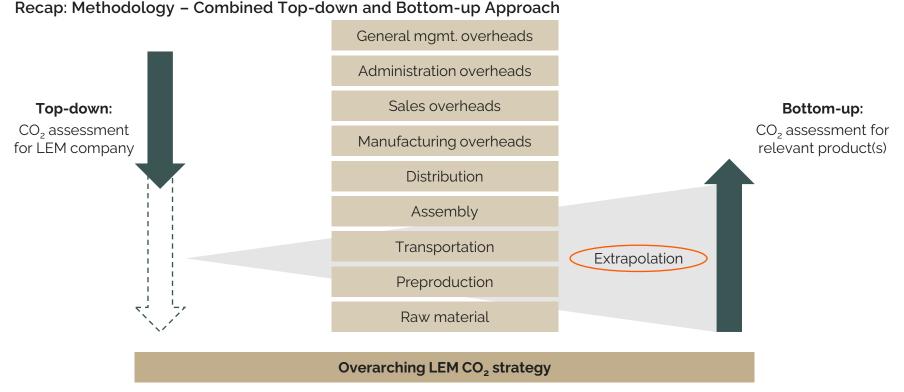
Agenda


- 1 Welcome and recap webinar episodes 1 and 2
- 2 Introduction LEM and initial situation

3 CO₂ measurement methods applied

- 4 Results and conclusions based on CO₂ emission measurement
- 5 Action plan and quick wins
- 6 Next steps in LEM's mission for CO₂ neutrality

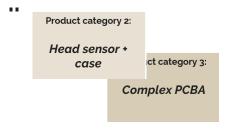
Product Lifecycle Model With Qualitative Patterns for CO₂e Influenceability, Determination and Occurrence



Significance of early development phase for lifecycle CO₂e

To Assess All Three Scopes, Our Methodology Follows a Combined Top-Down and Bottom-up Approach

Source: SE, LEM


Confidential © 2023

The Bottom-up Approach for Product CO₂ Emissions Is Based on Detailed CO₂ Calculations for 6 Products Which Are Extrapolated to the Entire Portfolio

Extrapolation approach for purchased components

Categorization of product portfolio

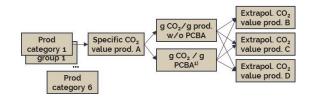
• Definition of 6 technologically representative product categories

...

• Allocation of entire product portfolio to this product categories

Calculation of CO₂ emissions of representative products

• Identification of 6 representative products for complete product portfolio


• Calculation of generated CO₂ •• emissions for each representative product

	Raw material [kg CO₂e]	Prod. at Tier 1 [kg CO ₂ e]		Assembly LEM [kg CO₂e]	CO ₂ (1 sensor) [kg CO ₂ e]
HLSR 20-P	0.127	0.019	0.005	0.029	0.180
DCBM 400	22.742	0.773	0.846	0.007	24.369

Extrapolation

• Review of the LEM data: all components of product portfolio (e.g., area, size, weight)

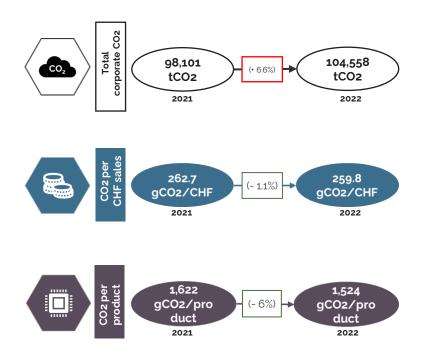
AVL S SF

- Derivation of suitable extrapolation parameters for representative products
- Execution of extrapolation

- 1 Welcome and recap webinar episodes 1 and 2
- 2 Introduction LEM and initial situation
- 3 CO₂ measurement methods applied
- 4 Results and conclusions based on CO₂ emission measurement
- 5 Action plan and quick wins
- 6 Next steps in LEM's mission for CO₂ neutrality

Deep Dive in CO_2 Footprint Calculation of One LEM Specific Product: LF 1010-S/SP16

Detailed CO₂ footprint for LF 1010 incl. raw material, transportation, production and assembly


6 - Potting		Component	<u>Raw material</u> CO₂e per sensor [kg CO₂e]	<u>Transport from</u> <u>supplier</u> CO ₂ e per sensor [kg CO ₂ e]	$\frac{Production at}{supplier}$ $CO_2 e per sensor$ $[kg CO_2 e]$	Assembly at LEM CO ₂ e per sensor [kg CO ₂ e]
		1 - PCBA	3.41	0.0046	0.0000	
	– 1 - PCBA	2 - PCBA + Cygnus module	0.16	0.0000	0.0000	
	2 - PCBA + Cygnus Module	3 - Magnetic core protection	0.05	0.0007	0.0034	
	 3 - Magnetic core protection 	4 - Magnetic core	0.17	0.1503	0.0340	0.1200
7 - Secondary	– 4 - Magnetic core	5 - Case	0.57	0.0006	0.0410	
winding		6 - Potting	1.06	0.0458	0.0000	
	– 5 - Case	7 - Secondary winding	1.14	0.0207	0.0000	
		Sub-Total (in % of total)	6.4770 (93.9%)	0.2228 (3.2%)	0.0784 (1.2%)	0.1200 1.7%
		Total CO2e		6,8982	kg CO₂e	

Between 2021 and 2022 Corporate CO_2 Emissions Increased at a Lower Rate (7%) Than the Total Production Volume (13%)

Production volume by product category [mio. units]

Scope 3 Is Accountable for 96% Of the Total Emissions Driven by Purchased Components and Is Targeted to Be Carbon Neutral in 2040

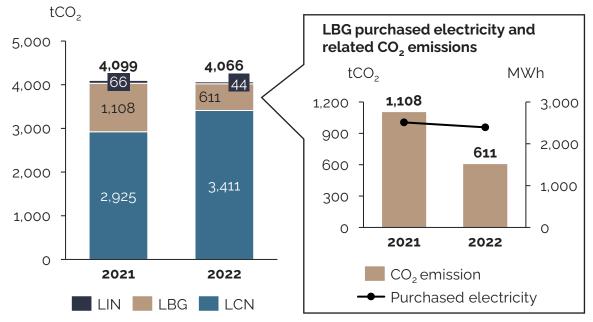
AVL 🐝 SE

Corporate CO2 Asessment: Emissions by category

28 tCO2	Scope 1	Stationary combustion Mobile combustion	14
4,07	Scope 2	Purchased electricity	4.099
		Inbound transportation	37
		Outbound transportation	8 455
		Employee commuting	1 618
02		Business travels	≥ 252 ■ 853
100,381 tCO2	Scope 3	Purchased goods and services	62 125
100		Production materials	5.530 5.723 +3.5 %
		Capital goods	285 ■ 329
		Disposal and waste	
		Purchased components	77 601

- 1 Welcome and recap webinar episodes 1 and 2
- 2 Introduction LEM and initial situation
- 3 CO₂ measurement methods applied
- 4 Results and conclusions based on CO₂ emission measurement

5 Action plan and quick wins

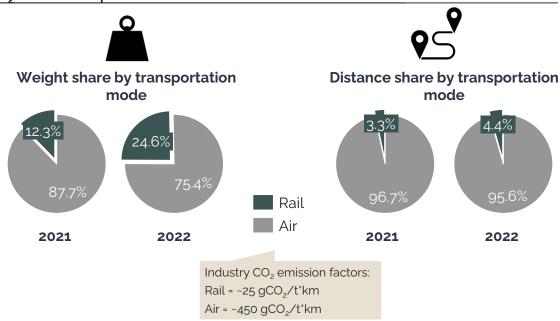

6 Next steps in LEM's mission for CO₂ neutrality

As an Example, LEM Bulgaria Reduced Emissions by About 1000 TCO₂ by Switching to Green Energy and the Replacement of an Energy-Intensive Air Compressor

Deep Dive: CO₂ Reduction Action – LEM Bulgaria Purchased Electricity

Electricity CO₂ emissions by site [tCO₂] and LBG purchased electricity [kWh]

CO₂ Reduction Actions


- New air compressor using less electricity
- From mid 2022, LBG switched to green electricity => CO₂ reductions with similar energy consumption

→ total value of the reduction measure: ~1,000 tCO₂

Another Example Is the Reduction of Air Transportation and the Increase in Rail Transportation on a Global Scale

Deep Dive CO₂ Actions: Change of Intercontinental Transportation Mode

CO₂ measure impact

CO₂ measure details

Ideas accepted and in progress

- Replacement of air shipments by train shipments (China to Europe excl. Switzerland)
- Transported rail tons ratio increased from 12% in 2021 to 41% in Sept. 2023 aiming the self-imposed target of 50% by FY 2023
- Replacement of air shipments by sea shipments (China to Japan 0% to 10% in 2023)

Ideas accepted and in discussion

- Discussions with forwarders have started and first trials are planned for new routes between our different sites :
 - Sea China/US
 - Sea Europe/US

As a Third Example Cardboard Packaging Was Replaced by Re-Usable ESD Boxes – Integration of a Material Reducing Potting Machine Is in Progress

Deep Dive CO₂ Actions: Production Materials

Idea implemented

• Implementation initiated to replace ESD cardboards by re-usable ESD plastic boxes for raw materials and finished goods

Idea accepted and in discussion

• Extension of the usage of the re-usable ESD boxes also to local supplier

Idea accepted and in progress

 Installation of a more modern potting machine into the production process to reduce material input and CO₂intensive resin (by decreasing resin waste as a result of a smaller tank volume). Feb. 2024.

> Many CO₂ emissions saving initiatives are discussed along with **cost savings** (e.g. caused by material reduction or process facilitation)

- 1 Welcome and recap webinar episodes 1 and 2
- 2 Introduction LEM and initial situation
- 3 CO₂ measurement methods applied
- 4 Results and conclusions based on CO₂ emission measurement
- 5 Action plan and quick wins
- 6 Next steps in LEM's mission for CO₂ neutrality

LEM Has Integrated Its $\rm CO_2$ Reduction Strategy Within a Wider Sustainability Approach

LEM leveraged on the support of SE/AVL to embed CO₂ reduction elements into an ESG strategy and start its sustainable journey.

CO2 reduction elements		
Vision Overarching, long-term goal and commitment to CO2 reduction	Methods Definition and acquisition of methods used for measuring and improving	
Organisational anchoring Clear responsibilities, availability of competences, culture	Communication strategy Communication to stakeholders (customers, investors, staff)	
Targets Detailed targets over time for CO ₂ emissions, CO ₂ footprint, resources	Measurability CO ₂ emissions (in use), CO ₂ footprint in value chain, resources used	
Roadmap Action plan for target achievements over time		

« At LEM we help customers and society accelerate the transition to a sustainable future »

Now we're happy to answer your questions

Aiming for Carbon Neutrality: Experiences and Perspectives From a Current Sensor Maker

Webinar series episode 3

