

Battery Solutions for Electric Truck and Bus Applications

Dedicated solutions by AVL June 4, 2024

R. Doebereiner, B. Brunnsteiner, B. Guloglu

Today's Presenters

Dr. Rolf Döbereiner

Product Line Manager Commercial Vehicles, Electrification & ADAS/AD

> rolf.doebereiner@avl.com +43 316 787 5292

Dr. Bernhard Brunnsteiner

Skill Team Leader Battery Cell, System & Functions

bernhard.brunnsteiner@avl.com +43 316 787 1129

Reimagining Motion

"We are driven by a **passion** to examine the science, mechanics and philosophy of movement. To help create a world that is climate-neutral and one that makes **safe**, **comfortable**, **green mobility** a reality for everyone."

Helmut O. List

Chairman and CEO AVL List GmbH

E-Mobility

We are relentlessly striving towards climate-neutral mobility. Not just by increasing the efficiency of multiple propulsion systems, but also by pioneering energy from green resources.

Battery Solutions for Electric Truck and Bus Applications

Introduction and Target Setting

EU HDV CO₂ Standards – Decision and Consequences

Grey: targets in previous regulation.

/ 8

City l

City buses

Battery Electric Commercial Vehicles are to become mandatory.

-45 % CO₂ in 2030 requires...

- 420,000 zero-emission vehicles to be in operation within less than six years
- close to 100,000 ZEV to be registered annually from 2030

This means around **one third of all new registrations** would have **to be zero-emission** vehicles from 2030.

in case of non-compliance with the CO₂ targets: penalty of **4,250 € per gCO₂ / t-km** in 2030

Should a manufacturer with a 20 % market share
 (~50k vehicles p.a.) miss its target by 1 g,
the penalty would amount to over 360 million €.

© ACEA Factsheet CO₂ standards for heavy-duty vehicles, 17.02.2023, www.acea.auto

Commercial Vehicles are Dedicated to Its Application

<u>Trucks</u>

- Urban Distribution
- Regional Distribution
- Traction
- Haulage
- Special Vehicles (Garbage Trucks, Fire Brigades, ...)

<u>Buses</u>

City Bus – low floor

/ 9

- Regional City Bus low entry
- Coach
- Special Vehicles (Bus-Train, Convertible Bus, BRT, ...)

 $\ensuremath{\mathbb{C}}$ pictures MAN Truck & Bus SE

Key Challenges Truck and Bus Batteries

EV City Bus Key Requirements

Geometrical

- Step height, kneeling, floor, seats, etc. (R107)
- Approach, departure and ramp-over angles

Drive cycle

200-300 km mileage per day

2-3 stops/km

5-25 km/h average speed, 60-80 km/h maximum speed.

Energy Storage System and charging

- Up to 420 kWh for 12 m, up to 640 kWh for 18 m bus
- Opportunity and depot charging

Thermal conditioning

 The ambient temperature requirement is between -30 °C and +65 °C for both cabin and battery

State-of-the-art BEV City Bus Battery Placement on the Roof

PROs

- + Easy to package due to available free space on the roof
- + Possibility to implement various off the shelf battery packs from the market
- + **More space** at the back of the bus for other power electronics
- + Safety against venting gases in the event of battery failure

State-of-the-art BEV City Bus Battery Placement on the Roof

PROs

- + Easy to package due to available free space on the roof
- + Possibility to implement various off the shelf battery packs from the market
- + **More space** at the back of the bus for other power electronics
- + Safety against venting gases in the event of battery failure

CONs

- Higher Center of Gravity
- Reduced lateral and longitudinal **handling** performance
- Worse **tilting** performance
- Need for heavier, more complex and robust roof structure
- Longer **cooling** lines
- Longer HV harness cause voltage drop
- Need for additional protective cover against external factors
- Difficult to maintain and access

The Challenge Low Floor Battery Integration

AVL R&D Project

Integration of the Battery into the Low Floor of a City Bus:

- Battery capacity
- 12 m and 18 m City Bus
- Modular Battery System, applicable to other bus types as well (low entry, coach, ...)
- Safety and Durability
- Passenger capacity

AVL Battery Integration into City Bus

Geometrical Boundaries

AVL Battery Pack – City Bus Underfloor Placement

KPIs

- Optimized outer dimensions for maximum energy capacity
- Energy capacity ~35 kWh/pack

Achievements / Requirements

- Ability to package underfloor structure without extensive modifications
- No compromise on legal requirements
- Better handling performance due to lower Center of Gravity
- Shorter cooling lines and HV harness
- Lighter by using similar existing floor structure, that means more payload
- Possible to implement for other bus types, coaches, low-entry, ...

Challenges

- Restrictive packaging limits, especially in height
- Serviceability / Exchangeability / Replaceability
- Safety concept and durability

AVL Battery Pack – Capacity for BEV City Buses

Vehicle integration

- Maximum battery packs and capacities for both options are
 - 12 m Solo City Bus \rightarrow 15 packs \rightarrow 519 kWh
 - 18 m Articulated City Bus \rightarrow 19 packs \rightarrow 657 kWh
- Possible ranges for both options,
 - 12 m Solo City Bus \rightarrow up to 470 km based on SORT-1 Cycle *
 - 18 m Articulated City Bus \rightarrow up to 500 km based on SORT-1 Cycle *

Battery Capacity of City Buses

How to Solve These Challenges?

Safety and Durability

Thermal Safety as Key Challenge in Battery Development Battery Competence in Synergy With Various Skill Sets

/ 20

Thermal Safety as Key Challenge in Battery Development

Battery Competence

Cell selection: Safe vs risk cell types and its implications on design:

- Cell type dependent TR behavior
- Cell testing as service

System engineering: ensure TP solution does not violate other targets or functions

- E.g. costs, weight, package space
- E.g. durability, vibration, EMC, thermal performance, etc.

Cont. cell wear monitoring and prediction in BMS **functions**

TR detection and warning

Model-based system engineering (MBSE)

Development Skills

Unique and compete **simulation** workflow for TP considering:

- Cell heat release
- Particle ejection
- Abrasion
- Gas flow
- Mechanical impacts
- Gas ignition risk

Design guidelines, DfM, Cost Optimization
Testing best practice, tear-down manual, RCA
Data Analytics for fleet monitoring
PM, QM and processes

Virtual Development

/ 21

Design & Development

V&V & Testing Effic

AI & Data Analysis

nalysis

PM, Process & Quality

Thermal Safety as Key Challenge in Battery Development

AVL Service Portfolio

Service Portfolio in Thermal Safety and Thermal Propagation All Across the Product Lifecycle: Development to 2nd Life

AVL Service Portfolio

Virtual Risk Assessment: Mechanical Damage Which Can Lead to Thermal Runaway During Operation

Public

Cell Wear and Failure Prognosis **Thermal Runaway Detection**

Design & Development

V&V & Testing Efficiency

TR detection

Implemented in BMS TR detection for Warning signals to the driver accord. to GB requirements

PM, Process & Quality

/ 25 Public

Virtual Development

AI & Data Analysis

How to Solve These Challenges?

Lifetime

Lifetime Optimization It's Not "Just" Cell Aging but Much More ...

Challenge in Thermal Conditioning

Passive cool-down / heat-up

Volume Average Temperature of each Cell @ 0km/h Cool Down

Challenge

High cell temperature influence on performance, charging limits and lifetime

/ 29

Challenge in estimating SoC for LFP impact on SoX accuracy, SoH prediction

/ 30

Cloud BMS and Fleet Monitoring for Improved SoH Modelling and Warranty Cost Reduction

Approach description

Customer Benefits

- Improve SoH estimation precision (abs. max. err <2%)
- Ensure trustworthiness & reliability of vehicle's BMS
- Enable personalized vehicle individual control strategy
- Reduce warranty costs and customer down-time
- Extend battery life-time by 10% and enhance residual value

Challenges

- Connect On-Board BMS with backend cloud algorithms
- Working with huge amount of data from the field
- Bring machine learning models into production

AVL Tasks & Deliverables

- Combine domain and data science expertise for a ML-based SoH modelling
- Identify SoH influencing factors and predict remaining useful life for each vehicle
- Develop model confidence metrics to support the adaptive BMS control strategy
- Design and develop large-scale data processing system for model deployment in AWS
- MLOps to automate training and establish monitoring systems for data and model drift

Public

Conclusion

Battery Concept for City Bus underfloor integration

- Battery concept in underfloor fulfilling package space (height!) requirements
- Very good energy density, Battery capacity exceeding state-of-the-art level
- Realizing system advantages like for thermal conditioning (piping) or electrical function

Thermal Propagation Safe Design

- Full verification methodology with focus on virtual development
- Simulation method considering various physical side phenomena
- Design solutions in place for safe operation and stop TP

Lifetime Optimization

- Battery lifetime consideration beyond cell aging behaviour – including mechanical and performance degradation
- Model approaches for estimation of SoC, SoH, SoF, SoS
- Fleet monitoring in the cloud for lifetime optimization and fleet management

Thank you

www.avl.com